Differences in monthly medians of foF2 within seasons in the mid-latitude ionosphere during the period of low solar activity in 2007–2008 years

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The paper presents a comparative analysis of diurnal variations in the monthly median critical frequency of the regular ionospheric F2 layer (foF2) for all “standard” seasons during the period of low solar activity in 2007–2008. The hourly data from manual processing of measurements taken at mid-latitude ground-based vertical ionospheric sounding stations Wakkanai (Japan) and Hobart (Australia) located almost symmetrically relative to the geographic equator were analyzed. It is found that the relative differences in the median of the third month of any of the “standard” seasons compared to the median of the second month of the season are significantly higher than the differences in the median of the first month of the season relative to the median of the second month of the season. It is also shown using a specific example of these two mid-latitude stations that, according to their characteristics, the median of November (the last month of the autumn season) corresponds to the beginning of the winter season, and the median of May (the last month of the spring season) – to the beginning of the summer season. It has been established that the relative contribution of solar radiation to changes in the value of the electron concentration at the maximum of the F region (NmF2) under conditions of low solar activity in equinoctial seasons, associated with variations in the value and rate of change of the solar zenith angle, is no less than half of the relative contribution to changes in NmF2 made by variations in the composition of the neutral atmosphere.

全文:

受限制的访问

作者简介

V. Hegai

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)

编辑信件的主要联系方式.
Email: hegai@izmiran.ru
俄罗斯联邦, Moscow, Troitsk

A. Legenka

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)

Email: leg@izmiran.ru
俄罗斯联邦, Moscow, Troitsk

L. Korsunova

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)

Email: lpkors@rambler.ru
俄罗斯联邦, Moscow, Troitsk

参考

  1. Деминов М.Г., Деминова Г.Ф., Жеребцов Г.А., Пирог О.М., Полех Н.М. Изменчивость параметров максимума F2-слоя спокойной среднеширотной ионосферы при низкой солнечной активности: 1. Статистические свойства // Геомагнетизм и аэрономия. Т. 51. № 3. С. 352–359. 2011.
  2. Дэвис К. Радиоволны в ионосфере. М.: Мир, 502 с. 1973.
  3. Легенька А.Д., Корсунова Л.П., Хегай В.В. Некоторые особенности в суточном ходе месячных медиан foF2 в зимний период по данным наземных станций вертикального зондирования ионосферы японского региона / Общероссийская открытая научная конференция “Пушковские чтения: магнетизм на Земле и в Космосе”.15–16 мая 2019 г., ИЗМИРАН, г. Москва, г. Троицк. Сборник расширенных тезисов докладов. С. 103−106. http://www.izmiran.ru/library/pushkov2019/pushkov2019abs.pdf
  4. Михайлов А.В. Ионосферные возмущения и их прогнозирование / “Энциклопедия низкотемпературной плазмы”. Серия Б. Справочные приложения, базы и банки данных. Том 1–3. Ионосферная плазма. Ч. 2. / Отв. ред. В.Д. Кузнецов, Ю.Я. Ружин. М: ЯНУС-К. С. 182–214. 2009.
  5. Отнес Р., Эноксон Л. Прикладной анализ временных рядов. Основные методы. М.: Мир, 428 с. 1982.
  6. Ришбет Г., Гарриот О.К. Введение в физику ионосферы. Л.: Гидрометеоиздат, 304 с. 1975.
  7. Руководство URSI по интерпретации и обработке ионограмм. М.: Наука, 343 с. 1977.
  8. Фаткуллин М.Н., Зеленова Т.И., Козлов В.К., Легенька А.Д., Соболева Т.Н. Эмпирические модели среднеширотной ионосферы. М.: Наука, 256 с. 1981.
  9. Chapman S. The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth // P. Phys. Soc. V. 43. № 1. P. 26–46. 1931. https://doi.org/10.1088/0959-5309/43/1/305
  10. Codrescu M.V., Fuller-Rowell T.J., Munteanu V., Minter C.F., Millward G.H. Validation of the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics model: CTIPE-Mass Spectrometer Incoherent Scatter temperature comparison // Space Weather. V. 6. № 9. ID S09005. 2008. https://doi.org/10.1029/2007SW000364
  11. Danilov A.D., Laštovička J. Effects of geomagnetic storms on the ionosphere and atmosphere // International Journal of Geomagnetism and Aeronomy. V. 2. № 3. P. 209–224. 2001. https://elpub.wdcb.ru/journals/ijga/v02/gai99312/gai99312.htm
  12. https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php
  13. https://ccmc.gsfc.nasa.gov/publication-policy
  14. https://www.izmiran.ru/ionosphere/smf2/
  15. https://www.swpc.noaa.gov/products/solar-cycle-progression
  16. Mikhailov A.V. Ionospheric F2-layer storms // Fisica de la Tierra. V. 12. P. 223–262. 2000.
  17. Mikhailov A.V., Schlegel K. Equinoctial transitions in the ionosphere and thermosphere // Ann. Geophys. V. 19. № 7. P. 783–796. 2001. https://doi.org/10.5194/angeo-19-783-2001
  18. Prölss G.W. Ionospheric F-region storms / Handbook of Atmospheric Electrodynamics. V. 2. / Еd. Volland H. Ch.8. Boca Raton, FL USA: CRC Press. P. 195–248. 1995. https://doi.org/10.1201/9780203713297
  19. Rishbeth H., Muller-Wodarg I.C.F., Zou L., Fuller-Rowell T.J., Millward G.H., Moffett R.J., Idenden D. W., Aylward A. D. Annual and semiannual variations in the ionospheric F2-layer. II. Physical discussion // Ann. Geophys. V. 18. № 8. P. 945–956. 2000. https://doi.org/10.1007/s00585-000-0945-6
  20. Zou L., Rishbeth H., Müller-Wodarg I.C.F., Aylward A.D., Millward G.H., Fuller-Rowell T.J., Idenden D.W., Moffett R.J. Annual and semiannual variations in the ionospheric F2-layer. I. Modelling // Ann. Geophys. V. 18. № 8. P. 927–944. 2000. https://doi.org/10.1007/s00585-000-0927-8

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Daily distributions of monthly foF2med medians for the “standard” winter (left panels) and autumn (right panels) months for the Wakkanai NSWZ in the Northern Hemisphere (lower panels) and Hobart in the Southern Hemisphere (upper panels). The dashed-dotted lines show the medians of the first month of the corresponding season, the dashed lines show the medians of the second month, and the solid lines show the medians of the third month. The shaded rectangles below the abscissa axis mark the local time (LT) intervals from 18:00 to 06:00, and are centered at the top by a stylized image of a clock face that marks local midnight.

下载 (1MB)
3. Fig. 2. The same as Fig. 1, but for the “standard” summer (left panels) and spring (right panels) months.

下载 (1MB)
4. Fig. 3. Same as Fig. 1, but for the “standard” winter (left panels) and summer (right panels) months. The added solid lines with dots correspond to November (left panels) and May (right panels), respectively.

下载 (1MB)
5. Fig. 4. March (solid line) and September (dash-dotted line) medians of foF2med for the Hobart (upper panel) and Wakkanai (lower panel) NSWZIs. The dashed vertical line marks the time moment 04 UT, which corresponds to 13 LT for Wakkanai station and 15 LT for Hobart station. Additional designations are the same as in Fig. 1.

下载 (566KB)
6. Fig. 5. ε values in the “standard” winter (left) and spring (right) seasons for the Hobart (upper panels) and Wakkanai (lower panel) NSWZIs. Additional notations are the same as in Fig. 1.

下载 (1MB)
7. Fig. 6. The same as Fig. 5, but for the “standard” summer (left) and autumn (right) seasons.

下载 (1MB)
8. Fig. 7. Changes over an annual interval (from 01.12.2007 to 30.11.2008, abscissa axis) of the solar zenith angle (χ) for 12 LT, left ordinate axes (open circles) and median values of foF2med (for the same local time), right ordinate axes (solid lines with darkened circles) for the Hobart (upper panel) and Wakkanai (lower panel) NSWZIs, respectively. The day of the corresponding month is indicated in fractions above the open circles for ease of perception.

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2025