Quasi-bicentennial variation in temperature in the Earth’s Northern Hemisphere

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Eight Northern Hemisphere temperature reconstructions covering time intervals of 1192–2016 years were analyzed using Fourier and wavelet analysis and principal component analysis. A hemispheric-scale cyclicity with a period of 170–250 years was found, manifested over the past 1000 years. It was shown that this variation may have a certain contribution to the warming in the first half of the 20th century. However, the last 4–5 decades are most likely a period of decline in this cycle. Although the period of the detected variation is close to the period of the Suess solar cycle, no connection between the temperature and solar cyclicities could be found. Possible sources of the detected bicentennial periodicity are discussed.

全文:

受限制的访问

作者简介

M. Ogurtsov

Ioffe Institute; Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo

编辑信件的主要联系方式.
Email: maxim.ogurtsov@mail.ioffe.ru
俄罗斯联邦, St. Petersburg; St. Petersburg

参考

  1. Огурцов М.Г. Циклы солнечной активности и климат Северного Полушария Земли // Журн. Техн. Физ. Т. 94. № 12. С. 1996–1998. 2024. https://doi.org/10.61011/JTF.2024.12.59242.337-24
  2. Barnett T.P., Santer B.D., Jones P.D., Bradley R.S., Briffa K.R. Estimates of low frequency natural variability in near-surface air temperature // Holocene. V. 6. № 3. P. 255–263. 1996. https://doi.org/10.1177/095968369600600301
  3. Breitenmoser P., Beer J., Brönnimann S., Frank D., Steinhilber F., Wanner H. Solar and volcanic fingerprints in tree-ring chronologies over the past 2000 years // Palaeogeogr. Palaeocl. V. 313–314. P. 127–139. 2012. https://doi.org/10.1016/j.palaeo.2011.10.014
  4. Briffa K.R. Annual climate variability in the Holocene: interpreting the message of ancient trees // Quaternary Sci. Rev. V. 19. № 1–5. P. 87–105. 2000. https://doi.org/10.1016/S0277-3791(99)00056-6
  5. Büntgen U., Allen K., Anchukaitis K.J. et al. The influence of decision-making in tree ring-based climate reconstructions // Nat. Commun. V. 12. ID 3411. 2021. https://doi.org/10.1038/s41467-021-23627-6
  6. Christiansen B., Ljungqvist F.C. The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability // Clim. Past. V. 8. № 2. P. 765–786. 2012. https://doi.org/10.5194/cp-8-765-2012
  7. Esper J., Cook E.R., Schweingruber F.H. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability // Science. V. 295. № 5563. P. 2250–2253. 2002. https://doi.org/10.1126/science.106620
  8. Guillet S., Corona C., Khodri M. et al. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records // Nat. Geosci. V. 10. P. 123–128. 2017. https://doi.org/10.1038/ngeo2875
  9. Liu X.Q., Dong H.L., Yang X.D., Herzschuh U., Zhang E.L., Stuut J.B.W., Wang Y.B. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai–Tibetan Plateau // Earth Planet. Sc. Lett. V. 280. № 1–4. P. 276–284. 2009. https://doi.org/10.1016/j.epsl.2009.01.041
  10. Loehle C. A 2000-year global temperature reconstruction on non-tree ring proxies // Energ. Environ. V. 18. № 7. P. 1049–1058. 2007. https://doi.org/10.1260/095830507782616797
  11. Moberg A., Sonechkin D.M., Holmgren K., Datsenko M., Karlen W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data // Nature. V. 433. P. 613–617. 2005. https://doi.org/10.1038/nature03265
  12. Novello V., Vuille M., Cruz F.W. et al. Centennial-scale solar forcing of the South American Monsoon System recorded in stalagmites // Sci. Rep. V. 6. № 1. ID 24762. 2016. https://doi.org/10.1038/srep24762
  13. Ogurtsov M., Nagovitsyn Yu., Kocharov G.E., Jungner H. Long-period cycles of the Sun’s activity recorded in direct solar data and proxies // Sol. Phys. V. 211. № 1–2. P. 371–394. 2002. https://doi.org/10.1023/A:1022411209257
  14. Ogurtsov M., Veretenenko S., Lindholm M., Jalkanen R. Possible solar-climate imprint in temperature proxies from the middle and high latitudes of North America // Adv. Space Res. V. 57. № 4. P. 1112–1117. 2016. https://doi.org/10.1016/j.asr.2015.12.026
  15. Ogurtsov M. Study on possible solar influence on the сlimate of the Southern Hemisphere. Atmosphere. V. 13. № 5. ID 680. 2022а. https://doi.org/10.3390/atmos13050680
  16. Ogurtsov M. Long-term variability of summer temperature in the southern part of South America – is there a connection with changes in solar activity? // Atmosphere. V. 13. № 9. ID 1360. 2022b. https://doi.org/10.3390/atmos13091360
  17. Ogurtsov M.G. Bicentennial volcanic activity cycles and their long-term impact on Northern Hemisphere climate // Atmosphere. V. 15. № 11. ID 1373. 2024. https://doi.org/10.3390/atmos15111373
  18. Raspopov O.M., Dergachev V.A., Esper J., Kozyreva O.V., Frank D., Ogurtsov M., Shao X. The influence of the de Vries (∼200-year) solar cycle on climate variations: Results from the Central Asian Mountains and their global link // Palaeogeogr. Palaeocl. Paleoecol. V. 259. № 1. P. 6–16. 2008. https://doi.org/10.1016/j.palaeo.2006.12.017
  19. Schneider L., Smerdon J.E., Büntgen U., Wilson R.J.S., Myglan V., Kirdyanov A.V., Esper J. Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network // Geophys. Res. Lett. V. 42. № 11. P. 4556–4562. 2015. https://doi.org/10.1002/2015GL063956
  20. Torrence C., Compo G.P. A Practical guide to wavelet analysis // B. Am. Meteorol. Soc. V. 79. № 1. P. 61–78. 1998. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
  21. Wilson R., Anchukaitis K., Briffa K. et al. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context // Quaternary Sci. Rev. V. 134. P. 1–18. 2016. https://doi.org/10.1016/j.quascirev.2015.12.005

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Temperature reconstructions in the Northern Hemisphere used in the work: (a) – dendroreconstruction from Esper et al. [2002]; (b) – multi-reconstruction from Moberg et al. (2005]; (c) – multi-reconstruction without dendrodata from Loehle [2007]; (d) – multi-reconstruction from Christiansen and Ljungqvist [2012]; (d) – dendroreconstruction from Schneider et al. [2015]; (e) – dendroreconstruction from Wilson et al. [2016]; (g) – dendroreconstruction from Guillet et al. [2017]; (h) – dendroreconstruction from Büntgen et al. [2021].

下载 (2MB)
3. Fig. 2. Fourier spectra of temperature series: (a) – dendroreconstructions from Esper et al. [2002]; (b) – multi-reconstructions from Moberg et al. [2005]; (c) – multi-reconstructions from Loehle [2007]; (d) – multi-reconstructions from Christiansen and Ljungqvist [2012]; (d) – dendroreconstructions from Schneider et al. [2015]; (e) – dendroreconstructions from Wilson et al. [2016]; (g) – dendroreconstructions from Guillet et al. [2017]; (h) – dendroreconstructions from Büntgen et al. [2021]. Dashed lines – confidence level 0.95.

下载 (1MB)
4. Fig. 3. Global wavelet spectra of temperature series: (a) dendroreconstructions from Esper et al. [2002]; (b) multi-reconstructions from Moberg et al. [2005]; (c) multi-reconstructions from Loehle [2007]; (d) multi-reconstructions from Christiansen and Ljungqvist [2012]; (d) dendroreconstructions from Schneider et al. [2015]; (e) dendroreconstructions from Wilson et al. [2016]; (g) dendroreconstructions from Guillet et al. [2017]; (h) dendroreconstructions from Büntgen et al. [2021]. Dashed lines indicate confidence level of 0.95.

下载 (1MB)
5. Fig. 4. (a) – The first principal component of eight temperature series of PC1; (b) – the global Morlet wavelet spectrum of PC1, normalized to the confidence level of 0.95; (c) – the Fourier spectrum of PC1, the dotted line is the confidence level of 0.95.

下载 (823KB)
6. Fig. 5. Wavelet-filtered temperature reconstructions in the range of 171–259 years.

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2025