Деградация белков скелетных мышц горбуши Oncorhynchus gorbuscha (Salmonidae) в ходе нерестовой миграции

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Во время нерестовой миграции и нереста скелетные мышцы у рыб служат депо пластических и энергетических субстратов, которые активно расходуются для поддержания жизнеспособности. Охарактеризовано содержание водорастворимого белка и его окисленной (карбонилированной) фракции, а также активность гидролизующих белок ферментов (внутриклеточных протеиназ) в скелетных мышцах производителей горбуши Oncorhynchus gorbuscha в ходе нерестовой миграции из Белого моря в р. Индёра. На начальном отрезке миграционного пути из моря в реку в скелетных мышцах самок горбуши отмечено достоверное повышение уровня активности играющего ведущую роль в деградации мышечных белков катепсина D при отсутствии достоверных количественных изменений растворимой фракции белков. При этом в ходе нерестовой миграции горбуши наблюдалось накопление карбонилированных белков — маркеров оксидативного стресса. Следует подчеркнуть, что описанные изменения характерны только для белых скелетных мышц, в красных (аэробных, обеспечивающих длительную плавательную нагрузку) какие-либо изменения в ходе нерестовой миграции не выявлены.

Полный текст

Доступ закрыт

Об авторах

Н. П. Канцерова

Карельский научный центр РАН

Автор, ответственный за переписку.
Email: nkantserova@yandex.ru

Институт биологии

Россия, Петрозаводск

Д. А. Ефремов

Карельский научный центр РАН

Email: nkantserova@yandex.ru

Институт биологии

Россия, Петрозаводск

Л. А. Лысенко

Карельский научный центр РАН

Email: nkantserova@yandex.ru

Институт биологии

Россия, Петрозаводск

Список литературы

  1. Алексеев М.Ю., Ткаченко А.В., Зубченко А.В. и др. 2019. Распространение, эффективность нереста и возможность промысла интродуцированной горбуши (Oncorhynchus gorbusha Walbaum) в реках Мурманской области // Рос. журн. биол. инвазий. Т. 12. № 1. С. 1–13.
  2. Глубоковский М.К. 1995. Эволюционная биология лососевых рыб. М.: Наука, 343 с.
  3. Городилов Ю.Н. 2003. О проблеме интродукции тихоокеанских лососей в моря европейской части России // Вестн. СПбГУ. Сер. 3. Вып. 4. № 27. С. 57–63.
  4. Дорофеева Е.А., Алексеев А.П., Зеленников О.В., Зеленков В.М. 2006. Дальневосточная горбуша в бассейне Белого моря (к 50-летию начала интродукции) // Рыб. хоз-во. № 6. С. 71–73.
  5. Немова Н.Н., Лысенко Л.А., Канцерова Н.П. 2016. Деградация белков скелетных мышц в процессах роста и развития лососевых рыб // Онтогенез. Т. 47. № 4. С. 197–208. https://doi.org/10.7868/S0475145016040066
  6. Немова Н.Н., Канцерова Н.П., Лысенко Л.А. 2021. Особенности белкового метаболизма в скелетных мышцах костистых рыб // Рос. физиол. журн. им. И.М. Сеченова. Т. 107. № 6–7. С. 730–754. https://doi.org/10.31857/S0869813921060091
  7. Павлов С.Д., Шарманкин В.А., Габаев Д.Д. 2014. Результаты акклиматизации дальневосточной горбуши в Европе и о стабилизации уловов // Рыб. хоз-во. № 2. С. 85–88.
  8. Ando S., Hatano M., Zama K. 1986. Protein degradation and protease activity of chum salmon (Oncorhynchus keta) muscle during spawning migration // Fish Physiol. Biochem. V. 1. № 1. P. 17–26. https://doi.org/10.1007/BF02309590
  9. Anson M.L. 1938. The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin // J. Gen. Physiol. V. 22. № 1. P. 79–89. https://doi.org/10.1085/jgp.22.1.79
  10. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. V. 72. № 1–2. P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  11. Cook K.V., McConnachie S.H., Gilmour K.M. et al. 2011. Fitness and behavioral correlates of pre-stress and stress-induced plasma cortisol titers in pink salmon (Oncorhynchus gorbuscha) upon arrival at spawning grounds // Horm. Behav. V. 60. № 5. P. 489–497. https://doi.org/10.1016/j.yhbeh.2011.07.017
  12. Crossin G.T., Hinch S.G., Farrell A.P. et al. 2003. Pink salmon (Oncorhynchus gorbuscha) migratory energetics: response to migratory difficulty and comparisons with sockeye salmon (Oncorhynchus nerka) // Can. J. Zool. V. 81. № 12. P. 1986–1995. https://doi.org/10.1139/z03-193
  13. Cuervo A.M., Palmer A., Rivett A.J., Knecht E. 1995. Degradation of proteosomes by lysosomes in rat liver // Eur. J. Biochem. V. 227. № 3. P. 792–800. https://doi.org/10.1111/j.1432-1033.1995.0792p.x
  14. Enns D.L., Belcastro A.N. 2006. Early activation and redistribution of calpain activity in skeletal muscle during hindlimb unweighting and reweighting // Can. J. Physiol. Pharmacol. V. 84. № 6. P. 601–609. https://doi.org/10.1139/y06-013
  15. Florescu (Gune) I.E., Georgescu S.E., Dudu A. et al. 2021. Oxidative stress and antioxidant defense mechanisms in response to starvation and refeeding in the intestine of stellate sturgeon (Acipenser stellatus) juveniles from aquaculture // Animals. V. 11. № 1. Article 76. https://doi.org/10.3390/ani11010076
  16. Gallagher Z.S., Bystriansky J.S., Farrell A.P., Brauner C.J. 2013. A novel pattern of smoltification in the most anadromous salmonid: pink salmon (Oncorhynchus gorbuscha) // Can. J. Fish. Aquat. Sci. V. 70. № 3. P. 349–357. https://doi.org/10.1139/cjfas-2012-0390
  17. Gorissen M., Flik G. 2016. The endocrinology of the stress response in fish: an adaptation-physiological view // Fish Physiol. V. 35. P. 75–111. https://doi.org/10.1016/B978-0-12-802728-8.00003-5
  18. Johnstone J., Nash S., Hernandez E., Rahman M.S. 2019. Effects of elevated temperature on gonadal functions, cellular apoptosis, and oxidative stress in Atlantic sea urchin Arbacia punculata // Mar. Environ. Res. V. 149. P. 40–49. https://doi.org/10.1016/j.marenvres.2019.05.017
  19. Jürss K., Bastrop R. 1995. Amino acid metabolism in fish // Biochem. Mol. Biol. Fish. V. 4. P. 159–189. https://doi.org/10.1016/S1873-0140(06)80010-X
  20. Levine R.L., Garland D., Oliver C.N. et al. 1990. Determination of carbonyl content in oxidatively modified proteins // Methods Enzymol. V. 186. P. 464–478. https://doi.org/10.1016/0076-6879(90)86141-h
  21. Lu Y., Wu Z., Song Z. et al. 2016. Insight into the heat resistance of fish via blood: effects of heat stress on metabolism, oxidative stress and antioxidant response of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus // Fish Shellfish Immunol. V. 58. P. 125–135. https://doi.org/10.1016/j.fsi.2016.09.008
  22. Martin S.A.M., Blaney S., Bowman A.S., Houlihan D.F. 2002. Ubiquitin-proteasome-dependent proteolysis in rainbow trout (Oncorhynchus mykiss): effect of food deprivation // Pflügers Arch. — Eur. J. Physiol. V. 445. P. 257–266. https://doi.org/10.1007/s00424-002-0916-8
  23. Martin-Perez M., Fernandez-Borras J., Ibarz A. et al. 2012. New insights into fish swimming: a proteomic and isotopic approach in gilthead sea bream // J. Proteome Res. V. 11. № 7. P. 3533–3547. https://doi.org/10.1021/pr3002832
  24. McCormick S.D. 2012. Smolt physiology and endocrinology // Fish Physiol. V 32. P. 199–251. https://doi.org/10.1016/B978-0-12-396951-4.00005-0
  25. Miller K.M., Schulze A.D., Ginther N. et al. 2009. Salmon spawning migration: metabolic shifts and environmental triggers // Comp. Biochem. Physiol. Pt. D. Genom. Proteom. V. 4. № 2. P. 75–89. https://doi.org/10.1016/j.cbd.2008.11.002
  26. Mommsen T.P. 2004. Salmon spawning migration and muscle protein metabolism: the August Krogh principle at work // Comp. Biochem. Physiol. Pt. B. Biochem. Mol. Biol. V. 139. № 3. P. 383–400. https://doi.org/10.1016/j.cbpc.2004.09.018
  27. Mommsen T.P., French C.J., Hochachka P.W. 1980. Sites and patterns of protein and amino acid utilization during the spawning migration of salmon // Can. J. Zool. V. 58. № 10. P. 1785–1799. https://doi.org/10.1139/z80-246
  28. Morita K. 2022. Reverse migration of adult pink salmon (Oncorhynchus gorbuscha) to the sea after their return to fresh water // Environ. Biol. Fish. V. 105. № 12. P. 1825–1832. https://doi.org/10.1007/s10641-021-01139-y
  29. Navarro I., Gutiérrez J. 1995. Fasting and starvation // Biochem. Mol. Biol. Fish. V. 4. P. 393–434. https://doi.org/10.1016/S1873-0140(06)80020-2
  30. Noble J.E., Bailey M.J.A. 2009. Quantitation of Protein // Methods Enzymol. V. 463. P. 73–95. https://doi.org/10.1016/S0076-6879(09)63008-1
  31. Parvez S., Raisuddin S. 2005. Protein carbonyls: novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fish Channa punctata (Bloch) // Environ. Toxicol. Pharmacol. V. 20. № 1. P. 112–117. https://doi.org/10.1016/j.etap.2004.11.002
  32. Salem M., Nath J., Rexroad C.E. et al. 2005. Identification and molecular characterization of the rainbow trout calpains (Capn1 and Capn2): their expression in muscle wasting during starvation // Comp. Biochem. Physiol. Pt. B. Biochem. Mol. Biol. V. 140. № 1. P. 63–71. https://doi.org/10.1016/j.cbpc.2004.09.007
  33. Salem M., Kenney P.B., Rexroad C.E., Yao J. 2006a. Microarray gene expression analysis in atrophying rainbow trout muscle: a unique nonmammalian muscle degradation model // Physiol. Genomics. V. 28. № 1. P. 33–45. https://doi.org/10.1152/physiolgenomics.00114.2006
  34. Salem M., Kenney P.B., Rexroad C.E., Yao J. 2006b. Molecular characterization of muscle atrophy and proteolysis associated with spawning in rainbow trout // Comp. Biochem. Physiol. Pt. D. Genom. Proteom. V. 1. № 2. P. 227–237. https://doi.org/10.1016/j.cbd.2005.12.003
  35. Salem M., Silverstein J., Rexroad C.E., Yao J. 2007. Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss) // BMC Genomics. V. 8. Article 328. https://doi.org/10.1186/1471-2164-8-328
  36. Sänger A.M., Stoiber W. 2001. Muscle fiber diversity and plasticity // Fish Physiol. V. 18. P. 187–250. https://doi.org/10.1016/S1546-5098(01)18008-8
  37. Shaliutina-Kolešová A., Kotas P., Štěrba J. et al. 2016. Protein profile of seminal plasma and functionality of spermatozoa during the reproductive season in the common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) // Mol. Reprod. Dev. V. 83. № 11. P. 968–982. https://doi.org/10.1002/mrd.22737
  38. Toyohara H., Ito K., Ando M. et al. 1991. Effect of maturation on activities of various proteases and protease inhibitors in the muscle of ayu (Plecoglossus altivelis) // Comp. Biochem. Physiol. Pt. B. Comp. Biochem. V. 99. № 2. P. 419–424. https://doi.org/10.1016/0305-0491(91)90064-k
  39. von der Decken A. 1992. Physiological changes of skeletal muscle by maturation-spawning of non-migrating female Atlantic salmon, Salmo salar // Ibid. V. 101. № 3. P. 299–301. https://doi.org/10.1016/0305-0491(92)90002-9
  40. Wendelaar Bonga S.E. 1997. The stress response in fish // Physiol. Rev. V. 77. № 3. P. 591–626. https://doi.org/10.1152/physrev.1997.77.3.591
  41. Yamashita M., Konagaya S. 1990. High activities of cathepsins B, D, H and L in the white muscle of chum salmon in spawning migration // Comp. Biochem. Physiol. Pt. B. Comp. Biochem. V. 95. № 1. P. 149–152. https://doi.org/10.1016/0305-0491(90)90262-r
  42. Yamashita M., Konagaya S. 1992. Differentiation and localization of catheptic proteinases responsible for extensive autolysis of mature chum salmon muscle (Oncorhynchus keta) // Ibid. V. 103. № 4. P. 999–1003. https://doi.org/10.1016/0305-0491(92)90229-K

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Схема района исследований в период прилива (а) и отлива (б), а также местоположение точек отлова (⚪) производителей горбуши Oncorhynchus gorbuscha. Участки реки: 1 — предэстуарный, 2 — эстуарный, 3 — устьевой; (■) — суша; вода: (■) — пресная, (■) — солёная, (■) — распреснённая; (↙) — направление течения. Масштаб: 0.5 км.

Скачать (1000KB)

© Российская академия наук, 2025