Modeling the influence of H2S and CO2 concentrations on hydrate formation of a mixture approximating natural gas

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The application of energy-efficient and environmentally safe technology of gas hydrate crystallization for purification of natural gas from hydrogen sulfide (H2S) and carbon dioxide (CO2) is considered. Thermodynamic modeling of the influence of H2S and CO2 concentrations from 1.00 to 20.00 mol. % on gas hydrate dissociation pressures and filling of gas hydrate cavities with the gas mixture CH4 — C2H6 — C3H8 — n-C4H10 — CO2 — H2S — N2 in the temperature range of 273.15—283.15 K has been carried out. It is obtained that increasing the concentration of H2S leads to a significant decrease in the dissociation pressures of gas hydrates. The filling of small gas hydrate cavities with H2S molecules reaches 0.91. Increasing the concentration of CO2 leads to a slight increase in the dissociation pressures of gas hydrates. It is found that CO2 is poorly concentrated in the gas hydrate phase of the considered gas mixture. To extract CO2 it is necessary to apply multiple gas hydrate crystallization or to use natural gas deposits with low concentrations of C3H8.

Sobre autores

M. Kudryavtseva

National Research Lobachevsky State University of Nizhny Novgorod

Email: kudryavtseva.m.s@yandex.ru
Nizhny Novgorod, Russia

A. Petukhov

National Research Lobachevsky State University of Nizhny Novgorod

Nizhny Novgorod, Russia

D. Shablykin

National Research Lobachevsky State University of Nizhny Novgorod

Nizhny Novgorod, Russia

E. Stepanova

National Research Lobachevsky State University of Nizhny Novgorod

Nizhny Novgorod, Russia

Bibliografia

  1. Speight J.G. Natural gas: A basic handbook. Cambridge, Gulf Professional Publishing, 2018. 462 p.
  2. Hafezi R., Akhavan A.N., Pakseresht S. et al. // Energy. 2021. V. 224. № 120167.
  3. Мишин В.М. Переработка природного газа и конденсата. М.: Академия, 1999. 448 с.
  4. Соловьев Н.Н., Салина Л.С., Скоробогатов В.А. // Вести газовой науки. 2016. Т. 25. № 1. С. 125.
  5. Bellussi G., Broccia P., Carati A. et al. // Microporous Mesoporous Mater. 2011. V. 146. № 1—3. P. 134.
  6. Пат. 2485998 (РФ).
  7. Бык С.Ш., Макогон Ю.Ф., Фомина В.И. Газовые гидраты. М.: Химия, 1980. 296 с.
  8. Qin J., Kuhs W.F. // AIChE J. 2013. V. 59. № 6. P. 2155.
  9. Bhawangirkar D.R., Adhikari J., Sangwai J.S. // J. Chem. Thermodyn. 2018. V. 117. P. 180.
  10. Ward Z.T., Deering C.E., Marriott R.A. et al. // J. Chem. Eng. Data. 2015. V. 60. № 2. P. 403.
  11. Liang S., Kusalik P.G. // Chem. Sci. 2011. V. 2. № 7. P. 1286.
  12. Circone S., Stern L.A., Kirby S.H. et al. // J. Phys. Chem. B. 2003. V. 107. № 23. P. 5529.
  13. Ma Z.W., Zhang P., Bao H.S. et al. // Renew. Sustain. Energy Rev. 2016. V. 53. P. 1273.
  14. Duc N.H., Chauvy F., Herri J.-M. // Energy Convers. Manag. 2007. V. 48. № 4. P. 1313.
  15. Eslamimanesh A., Mohammadi A.H., Richon D. et al. // J. Chem. Thermodyn. 2012. V. 46. P. 62.
  16. Dashti H., Lou X. // TMS Annu. Meet. Exhib. Energy Technol. 2018. P. 3.
  17. Castellani B., Rossi F., Filipponi M. et al. // Biomass Bioenergy. 2014. V. 70. P. 330.
  18. Kim K., Kim K.S., Lee J.E. et al. // Sep. Purif. Technol. 2018. V. 200. P. 29.
  19. Ballard A.L., Sloan E.D. // Fluid Phase Equilib. 2002. V. 194—197. P. 371.
  20. Parrish W.R., Prausnitz J.M. // Ind. Eng. Chem. Process Des. Dev. 1972. V. 11. № 1. P. 26.
  21. Пат. 2576738 (РФ).
  22. Gallagher J.E. Natural gas measurement handbook. Houston: Gulf Publishing Company, 2006. 496 p.
  23. Liu G., Zhu L., Cao W. et al. // ACS Omega. 2021. V. 6. № 40. P. 26180.
  24. Широкова Г.С., Елистратов М.В. // Транспорт на альтернативном топливе. 2011. Т. 20. № 2. С. 42.
  25. Sloan E.D., Koh C.A. Clathrate hydrates of natural gases. Boca Raton: CRC Press, 2008. 721 p.
  26. Castellan G.W. Physical chemistry. 3rd ed. London: Addison-Wesley Publishing Company, 1983. 1038 p.
  27. John V.T., Papadopoulos K.D., Holder G.D. // AIChE J. 1985. V. 31. № 2. P. 252.
  28. Chen G.J., Guo T.M. // Chem. Eng. J. 1998. V. 71. № 2. P. 145.
  29. Klauda J.B., Sandler S.I. // Ind. Eng. Chem. Res. 2001. V. 40. № 20. P. 4197.
  30. Намиот А.Ю. Растворимость газов в воде: Справочное пособие. Москва: Недра, 1991. 167 с.
  31. Mortimer R.G. Physical chemistry. 3rd ed. London: Academic Press, 2008. 1392 p.
  32. Кричевский И.Р., Казарновский Я.С. // Журн. физ. химии. 1939. Т. 13. № 3. С. 378.
  33. Aspen physical property system V 8.4. Burlington. 2013. 248 p.
  34. Holder G.D., John V.T. // Fluid Phase Equilib. 1983. V. 14. P. 353.
  35. Sato E., Miyoshi T., Ohmura R. et al. // Jpn. J. Appl. Phys. 2007. V. 46. № 9R. P. 5944.
  36. Strobel T.A., Koh C.A., Sloan E.D. // Fluid Phase Equilib. 2009. V. 280. № 1—2. P. 61.
  37. Sergeeva M.S., Mokhnachev N.A., Shablykin D.N. et al. // J. Nat. Gas Sci. Eng. 2021. Vol. 86. № 103740.
  38. Seo Y., Lee S., Lee J. // Chem. Eng. Trans. 2013. V. 32. P. 163.
  39. Sun J., Xin Y., Chou I—M. et al. // J. Chem. Eng. Data. 2020. V. 65. № 8. P. 3884.
  40. Holder G.D., Corbin G., Papadopoulos K.D. // Ind. Eng. Chem. Fundam. 1980. V. 19. № 3. P. 282.
  41. Avlonitis D. // Chem. Eng. Sci. 1994. V. 49. № 8. P. 1161.
  42. Lee J.H., Kim S.H., Kang J.W. et al. // Fluid Phase Equilib. 2016. V. 409. P. 136.
  43. Маслов В.П. // Теоретическая и математическая физика. 2008. Т. 156. № 2. С. 303.
  44. McKoy V., Sinanoğlu O. // J. Chem. Phys. 1963. V. 38. № 12. P. 2946.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025