Influence of the method of catalyst production on the properties of synthesized carbon for electrochemical systems

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The results of investigation of the influence of the method of preparation on the properties of Co/Mo/MgO catalysts and carbon nanotubes (CNTs) synthesized on them by chemical vapor deposition are presented. The catalysts were prepared by modified precipitation method and glycine-nitrate method. The structure and properties of CNTs were studied by low-temperature nitrogen adsorption, scanning and transmission electron microscopy, and Raman spectroscopy. The effect of the addition of synthesized CNTs on the conductivity of NMC811 (LiNi0.8Mn0.1Co0.1O2) based cathode material was investigated.

作者简介

K. Koval

D.I. Mendeleev Russian University of Chemical Technology

Moscow, Russia

A. Kryukov

D.I. Mendeleev Russian University of Chemical Technology

Email: kriukov.a.i@muctr.ru
Moscow, Russia

Yu. Treshkina

D.I. Mendeleev Russian University of Chemical Technology

Moscow, Russia

A. Morozov

D.I. Mendeleev Russian University of Chemical Technology

Moscow, Russia

O. Selina

D.I. Mendeleev Russian University of Chemical Technology

Moscow, Russia

V. Emets

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Moscow, Russia

S. Ashikhmin

Global SO LLC

Khimki, Moscow region, Russia

I. Izvolsky

Global SO LLC

Khimki, Moscow region, Russia

A. Desyatov

D.I. Mendeleev Russian University of Chemical Technology

Moscow, Russia

参考

  1. Doustan F., Pasha M.A. // Fuller. Nanotub. Carbon Nanostructures. 2016. V. 24. № 1. P. 25.
  2. Hosseini A.A., Doustan F., Akbarzadeh Pasha M. // J. Nanostruct. 2013. V. 3. № 3. P. 333.
  3. Lobiak E.V., Shlyakhova E.V., Gusel’nikov A.V.et al. // Phys. Status Solidi B Basic Res. 2018. V. 255. № 1. P. 1700274.
  4. Zaretskiy S.N., Hong Y.K., Ha D.H. et al. // Chem. Phys. Lett. 2003. V. 372. № 1—2. P. 300.
  5. Park J.B., Choi G.S., Cho Y.S. et al. // J. Cryst. Growth. 2002. V. 244. № 2. P. 211.
  6. Awadallah A.E., Aboul-Enein A.A., Azab M.A., Abdel-Monem Y.K. // Fuller. Nanotub. Carbon Nanostructures. 2017. V. 25. № 4. P. 256.
  7. Yang L., Zhao T., Jalil A. et al. // Appl. Surf. Sci. 2023. № 637. P. 157889.
  8. Qingwen L., Hao Y., Yan C. et al. // J. Mater. Chem. 2002. V. 12. № 4. P. 1179.
  9. Li H., Shi C., Du X. et al. // Mater. Lett. 2008. V. 62. № 10—11. P. 1472.
  10. Lee C.J., Park J., Kim J.M. et al. // Chem. Phys. Lett. 2000. V. 327. № 5—6. P. 277.
  11. Maruyama T., Kondo H., Ghosh R. et al. // Carbon. 2016. № 96. P. 6—13.
  12. Sun T., Fan G., Li F. // Ind. Eng. Chem. Res. 2013. V. 52. № 16. P. 5538.
  13. Chen D.R., Chitranshi M., Schulz M., Shanov V. // Nano Life. 2019. V. 9. № 4. P. 1930002.
  14. Kumar M., Ando Y. // J. Nanosci. Nanotechnol. 2010. V. 10. № 6. P. 3739.
  15. Pirard S.L., Douven S., Bossuot C. et al. // Carbon. 2007. V. 45. № 6. P. 1167.
  16. Lobiak E.V., Shlyakhova E.V., Bulusheva L.G. et al. // J. Alloys Compd. 2015. № 621. P. 351.
  17. Coquay P., Peigney A., De Grave E. et al. // J. Phys. Chem. B. 2005. V. 109. № 38. P. 17813.
  18. Pérez-Mendoza M., Vallés C., Maser W.K. et al. // Nanotechnology. 2005. V. 16. № 5. P. S224.
  19. Cordier A., de Resende V.G., Weibel A. et al. // J. Phys. Chem. C. 2010. V. 114. № 45. P. 19188.
  20. Jourdain V., Bichara C. // Carbon. 2013. № 58. P. 2.
  21. Kozawa A., Kiribayashi H., Ogawa S. et al. // Diam. Relat. Mater. 2016. № 63. P. 159.
  22. Xu Y., Dervishi E., Saini V. et al. // J. Mater. Chem. 2008. V. 18. № 47. P. 5738.
  23. Yu C.L., Sakthinathan S., Hwang B.Y. et al. // Int. J. Hydrogen Energy. 2020. V. 45. № 32. P. 15752.
  24. Kim J., Lee H., Lee J. et al. // Materials. 2023. V. 16. № 22. P. 7191.
  25. Ventrapragada L.K. Zhu, J., Creager, S.E. et al. // ACS omega. 2018. V. 3. № 4. P. 4502.
  26. Мацукевич И.B., Крутько Н.П., Липай Ю.В., Овсеенко Л.В. // Известия НАН Беларуси. Серия химических наук. 2020. Т. 56. № 1. С. 33.
  27. Kim K.H., Oh Y., Islam M.F. // Adv. Funct. Mater. 2013. V. 23. № 3. P. 377.
  28. Li Z., Deng L., Kinloch I.A., Young R.J. // Prog. Mater. Sci. 2023. № 135. P. 101089.
  29. Quéméré P. // J. Open Source Softw. 2024. V. 9. № 96. P. 5868.
  30. Jiang Y., Wang H., Li B., Zhang Y. // Carbon. 2016. № 107. P. 600.
  31. Gao B., Zhang Y., Zhang J.et al. // J. Phys. Chem. C. 2008. V. 112. № 22. P. 8319.
  32. Ichinose Y., Yoshida A., Horiuchi K. et al. // Nano Lett. 2019. Т. 19. № 10. P. 7370.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025