SYNTHESIS AND MAGNETIC PROPERTIES OF Co1−xCuxCr2S4 (x = 0–0.6) SOLID SOLUTIONS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Solid solutions Co1−xCuxCr2S4 (x = 0–0.6) between ferrimagnet CoCr2S4 (Tc = 222 K) and ferromagnet CuCr2S4 (Tc = 367 K) were synthesized by the solid-phase method. Magnetic properties were investigated by the dynamic method in the temperature range of 5–300 K at different frequencies (100, 1000, 5000 and 10000 Hz) of an alternating magnetic field with an amplitude of 1 Oe. The temperatures and nature of magnetic phase transitions in the system were determined. Substitution of Co by Cu from x = 0 to x = 0.6 increases the magnetic ordering temperature from 222 K to 287 K, respectively. A transition to a frustrated state of the spin glass type was detected in the sample with x = 0.05.

Sobre autores

E. Busheva

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: busheva@igic.ras.ru
Moscow, Russia

M. Suanov

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: busheva@igic.ras.ru
Moscow, Russia

G. Shabunina

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: busheva@igic.ras.ru
Moscow, Russia

P. Vasilev

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: busheva@igic.ras.ru
Moscow, Russia

Bibliografia

  1. Ramirez A.P., Cava R.J., Krajewski J. // Nature. 1997. V. 386. P. 156. https://doi.org/10.1038/386156a0
  2. Tsurkan V., Kragova Nidda H.-A., Deisenhofer J. et al. // Phys. Rep. 2021. V. 926. P. 1. https://doi.org/10.1016/j.physrep.2021.04.002
  3. Ohgushi, K., Okimoto Y., Ogasawara T. et al. // J. Phys. Soc. Japan. 2008. V. 77. № 3. P. 034713. http://dx.doi.org/10.1143/JPSJ.77.034713
  4. Sagredo V., Moron M.C., Delgado G.E. // Phys. B: Condens. Matter. 2006. V. 384. № 1–2. P. 82. https://doi.org/10.1016/j.physb.2006.05.156
  5. Dey K., Karmakar A., Indra A. et al. // Phys. Rev. B. 2015. V. 92. P. 024401. https://doi.org/10.1103/PhysRevB.92.024401
  6. Dey K., Indra A., Karmakar A., Giri S. // J. Magn. Magn. Mater. 2020. V. 498. P. 166090. https://doi.org/10.1016/j.jmmm.2019.166090
  7. Sadrollahi E., Litterst F., Prodan L. et al. // Phys. Rev. B. 2024. V. 110. P. 054439. https://doi.org/10.1103/PhysRevB.110.054439
  8. Malicka E., Karolus M., Pawek J. et al. // Physica B: Cond. Mat. 2020. V. 581. P. 411829. https://doi.org/10.1016/j.physb.2019.411829
  9. Шабуншна Г.Г., Бушева Е.В., Васильев П.Н. и др. // Неорган. Материалы. 2023. Т. 59. № 11. С. 1222. https://doi.org/10.31857/S0002337X23110131
  10. Gibart P., Dormann J.-L., Pellerin Y. // Phys. Stat. Sol. B. 1969. V. 36. P. 187. https://doi.org/10.1002/pssb.19690360120
  11. Marais A., Porte M., Goldstein I., Gibart P. // J. Magn. Magn. Mater. 1980. V. 15–18. № 3. P. 1287. https://doi.org/10.1016/0304-8853(80)90292-9
  12. Samanta S., Saini S.M. // J. Phys. Chem. Sol. 2017. V. 102. P. 130. https://doi.org/10.1016/j.jpcs.2016.10.016
  13. Felea V., Cong P.T., Prodan L. et al. // Low Temp. Phys. 2017. V. 43. P. 1290. https://doi.org/10.1063/1.5010313
  14. Ahrenkiel R., Coburn T., Carnall E. // IEEE Trans. Magn. 1974. V. 10. P. 2. https://doi.org/10.1109/TMAG.1974.1058280
  15. Ahrenkiel R.K. // IEEE Trans. Magn. 1978. V. 14. P. 454. https://doi.org/10.1109/TMAG.1978.1059868
  16. Аминов Т.Г., Бушева Е.В., Шабуншна Г.Г., Новопрочнев В.М. // Журн. неорг. химии. 2016. Т. 61. № 4. С. 482. https://doi.org/10.7868/S0044457X16040036
  17. Аминов Т.Г., Бушева Е.В., Шабуншна Г.Г., Новопрочнев В.М. // Журн. неорг. химии. 2018. Т. 63. № 4. С. 487. https://doi.org/10.7868/S0044457X18040141
  18. Shabunina G.G., Busheva E.V., Vasilev P.N. et al. // Physica B: Condens. Matter. 2024. V. 691. P. 416361. https://doi.org/10.1016/j.physb.2024.416361
  19. Balents L. // Nature. 2010. V. 464. P. 199. https://doi.org/10.1038/nature08917
  20. Ellert O.G., Popova E.F., Kirdyankin D.I. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 10. P. 1339. https://doi.org/10.31857/S0044457X23600937
  21. Teierin Yu.A., Smirnova M.N., Maslakov K.I. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 7. P. 904. https://doi.org/10.31857/S0044457X23600135
  22. Min Sik Park, Kwon S.K., Youn S.J., Min B.I. // Phys. Rev. B. 1999. V. 59. № 15. P. 10018. https://doi.org/10.1103/PhysRevB.59.10018
  23. Kamihara Y., Matoba M., Kyomen T., Itoh M. // Solid State Comm. 2004. V. 132. P. 247. https://doi.org/10.1016/j.ssc.2004.07.034
  24. Kamihara Y., Matoba M., Kyomen T., Itoh M. // Physica B. 2006. V. 378–380. P. 1120. https://doi.org/10.1016/j.physb.2006.01.539
  25. Lutz H.D., Becker R.-A., Turk W., Buch V. // Monatsh. Chem. 1973. V. 104. P. 572. https://doi.org/10.1007/BF00903124
  26. Zheng X.C., Li X.Y., He L.H. et al. // Chin. Phys. B. 2017. V. 26. № 3. P. 037502. https://doi.org/10.1088/1674-1056/26/3/037502
  27. Belov K., Koroleva L., Shalimova M. et al. // Vestn. Mosk. Univ. Ser. 3: Fiz. Astron. 1980. V. 21. № 3. P. 47. https://www.nipsmsu.ru/en/abstract/1980/3/1980-21-3-047
  28. Pankrats A., Vorotynov A., Tagarinov V. et al. // J. Magn. Magn. Mater. 2018. V. 452. P. 30. https://doi.org/10.1016/j.jmmm.2017.12.092
  29. Ramasamy K., Sims H., Gupta R.K. et al. // Chem. Mater. 2013. V. 25. P. 4003. https://doi.org/10.1021/cm401938f
  30. Sadykov R.A., Zariskii V.N., Veselago V.G. // Physica B. 1989. V. 156–157. P. 324.
  31. Sadrollahi E., Litterst F., Prodan L. et al. // Phys. Rev. B. 2024. V. 110. P. 054439. https://doi.org/10.1103/PhysRevB.110.054439
  32. Kovum N.M., Naiden E.P., Prokopenko V.K., Shernya-kov A.A. // Zh. Eksp. Teor. 1979. V. 77. P. 404408.
  33. Gogolowicz M., Warczewski J., Mydlarz T., Okonska-Kozlowska I. // J. Magn. Magn. Mater. 1985. V. 50. P. 49. https://doi.org/10.1016/0304-8853(85)90085-X
  34. Hidakaa M., Tokiwaa N., Fujii H., Lee J.M. // J. Magn. Magn. Mater. 2004. V. 272. P. 394. https://doi.org/10.1016/j.jmmm.2003.11.116
  35. Песмуржий Д.А. // Неорг. Матер. 1976. Т. 12. № 11. С. 1909.
  36. Lavina B., Salvino G., Giusta A.D. // Phys. Chem. Minerals. 2002. V. 29. P. 10. https://doi.org/10.1007/s002690100198
  37. Mydosh J.A. // Rep. Prog. Phys. 2015. V. 78. P. 052501. https://doi.org/10.1088/0034-4885/78/5/052501
  38. Prodan L., Yasin S., Jesche A., Deisenhofer J. // Phys. Rev. B. 2021. V. 104. P. L020410. https://doi.org/10.1103/PhysRevB.104.L020410
  39. Chang L.J., Huang D.J., Li W.-H. et al. // J. Phys.: Condens. Matter. 2009. V. 21. P. 456008. https://dx.doi.org/10.1088/0953-8984/21/45/456008
  40. Sundaresan A., Ter-Oganessian N. // J. Appl. Phys. 2021. V. 129. № 6. P. 060901. https://dx.doi.org/10.1063/5.0035825

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025