DFT STUDY OF ATOMIC LAYER ETCHING OF AMORPHOUS ZINC OXIDE USING ACETYLACETONE AND ITS FLUORINATED DERIVATIVES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A combined quantum chemical and molecular dynamics study of atomic layer etching of amorphous zinc oxide by β-diketones: acetylacetone, 1,1,1-trifluoroacetylacetone, and 1,1,1,5,5,5-hexafluoroacetylacetone was carried out using the ORCA 6.0.1 and LAMMPS software packages. Within the framework of density functional theory at the PBE-D3BJ/def2-SVP level, the energetic parameters of adsorption and desorption were investigated, and the induced surface stress was quantitatively evaluated. It was found that acetylacetone induces the highest surface stress (1.62 eV) and enables spontaneous etching due to its low desorption energy (2.10 eV). The fluorinated derivatives exhibit a self-limiting interaction behavior: 1,1,1-trifluoroacetylacetone, with a desorption energy of 3.27 eV, induces a surface stress of 1.05 eV, while 1,1,1,5,5,5-hexafluoroacetylacetone causes the weakest effect on the surface structure (1.01 eV) with a desorption energy of 2.53 eV. The obtained results suggest that 1,1,1-trifluoroacetylacetone can be considered the most suitable precursor for controlled atomic layer etching of zinc oxide.

Sobre autores

U. Damyrov

Dagestan State University; Institute of Geothermal and Renewable Energy Problems

Email: umahan.damurov@gmail.com
Branch of the Joint Institute for High Temperatures of the Russian Academy of Sciences Makhachkala, Russia

S. Gadzhimuradov

Institute of Physics, Dagestan Federal Research Center of the Russian Academy of Sciences

Email: umahan.damurov@gmail.com
Makhachkala, Russia

S. Suleymanov

Institute of Physics, Dagestan Federal Research Center of the Russian Academy of Sciences

Email: umahan.damurov@gmail.com
Makhachkala, Russia

I. Abdulagatov

Dagestan State University

Email: umahan.damurov@gmail.com
Makhachkala, Russia

A. Abdulagatov

Dagestan State University

Autor responsável pela correspondência
Email: umahan.damurov@gmail.com
Makhachkala, Russia

Bibliografia

  1. George S.M. // Acc. Chem. Res. 2020. V. 53. № 6. P. 1151. https://doi.org/10.1021/acs.accounts.0c00084
  2. George S.M., Lee Y. // ACS Nano. 2016. V. 10. № 5. P. 4889. https://doi.org/10.1021/acsnano.6b02991
  3. Faraz T., Roozeboom F., Knoops H.C.M. et al. // ECS J. Solid State Sci. Technol. 2015. V. 4. № 6. P. 5023. https://doi.org/10.1149/2.0051506jss
  4. Foroughi-Abari A., Cadien K. // Nanofabrication: Techniques and Principles. 2012. P. 143. https://doi.org/10.1007/978-3-7091-0424-8_6
  5. Kanarik K.J., Lill T., Hudson E.A. et al. // J. Vac. Sci. Technol., A: Vacuum, Surfaces, Films. 2015. V. 33. № 2. P. 020802. https://doi.org/10.1116/1.4913379
  6. Knoops H.C.M., Langeris E., van de Sanden M.C.M. et al. // J. Electrochem Soc. 2010. V. 157. № 12. P. 241. https://doi.org/10.1149/1.3491381
  7. Arts K., Uriainen M., Puurunen R.L. et al. // J. Phys. Chem. C. 2020. V. 124. № 1. P. 27030. https://doi.org/10.1021/acs.jpcc.9b11082
  8. Lu W., Lee Y., Gerisch J.C. et al. // Nano. Lett. 2019. V. 19. № 8. P. 5159. https://doi.org/10.1021/acs.nanolett.9b01525
  9. Lee Y., Huffman C., George S.M. // Chem. Mater. 2016. V. 28. № 21. P. 7657. https://doi.org/10.1021/acs.chemmater.6b02543
  10. Song S.K., Kim J.S., Margayio H.R.M. et al. // ACS Nano. 2021. V. 15. № 7. P. 12276. https://doi.org/10.1021/acsnano.lc04086
  11. Edel R., Alexander E., Nam T. et al. // J. Vac. Sci. Technol., A. 2024. V. 42. № 6. https://doi.org/10.1116/6.0003899
  12. Fang C., Cao Y., Wu D. et al. // Prog. Natural Sci: Matter. Int. 2018. V. 28. № 6. P. 667. https://doi.org/10.1016/j.pnsc.2018.11.003
  13. Sharma D.K., Shukla S., Sharma K.K. et al. // Mater. Today: Proc. 2022. V. 49. № 8. P. 3028. https://doi.org/10.1016/j.matpr.2020.10.238
  14. Peverini L., Ziegler E., Bigault T. et al. // Phys. Rev. B: Condens. Matter Mater Phys. 2005. V. 72. № 4. P. 045445. https://doi.org/10.1103/PhysRevB.72.045445
  15. Romero R., Leinen D., Dalchiele E.A. et al. // Thin Solid Films. 2006. V. 515. № 4. P. 1942. https://doi.org/10.1016/j.tsf.2006.07.152
  16. Таспуооа M.A., Таспуооа A.A., Бестровов С.К. и др. // Журн. неорган. химии. 2024. Т. 69. № 3. С. 385. https://doi.org/10.31857/S0044457X24030128
  17. Cano A.M., Kondati Natarajan S. et al. // J. Vac. Sci. Technol., A. 2022. V. 40. № 2. P. 022601. https://doi.org/10.1116/6.0001542
  18. Partridge J.L., Abdulagatov A.I., Sharma V. et al. // Appl. Surf. Sci. 2023. V. 638. P. 157923. https://doi.org/10.1016/j.apsusc.2023.157923
  19. Partridge J.L., Abdulagatov A.I., Zywotko D.R. et al. // Chemistry of Materials. 2024. V. 36. № 15. P. 7151. https://doi.org/10.1021/acs.chemmater.4c00862
  20. Murdzek J.A., George S.M. // J. Vac. Sci. Technol., A. 2020. V. 38. № 2. P. 022608. https://doi.org/10.1116/1.5135317
  21. Mameli A., Verheijen M.A., Mackus A.J.M. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 44. P. 38588. https://doi.org/10.1021/acsami.8b12767
  22. Zywotko D.R., George S.M. // Chemistry of Materials. 2017. V. 29. № 3. P. 1183. https://doi.org/10.1021/acs.chemmater.6b04529
  23. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  24. Mohimi E., Chu X.I., Trinh B.B. et al. // ECS Journal of Solid-State Science and Technology. 2018. V. 7. № 9. P. 491. https://doi.org/10.1149/2.0211809jss
  25. Chittock N.J., Maas J.F.W., Tezsevin I. et al. // J. Mater. Chem. C. Mater. 2024. V. 13. № 3. P. 1345. https://doi.org/10.1039/d4tc03615h
  26. Kim Y., Chae S., Ha H. et al. // Appl. Surf. Sci. 2023. V. 619. P. 156751. https://doi.org/10.1016/j.apsusc.2023.156751
  27. Neese F. // Wiley Interdiscip Rev Comput Mol. Sci. 2012. V. 2. № 1. P. 73. https://doi.org/10.1002/wcms.81
  28. Thompson A.P., Aktulga H.M., Berger R. et al. // Comput. Phys. Commun. 2022. V. 271. P. 108171. https://doi.org/10.1016/j.cpc.2021.108171
  29. Buckingham R. // Proc. R. Soc. Lond. A. 1938. V. 168. № 933. P. 264. https://doi.org/10.1098/rspa.1938.0173
  30. Binks D.J., Grimes R.W. // J. Am. Ceram. Soc. 1993. V. 76. № 9. P. 2370. https://doi.org/10.1111/j.1151-2916.1993.tb07779.x
  31. Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98. № 12. P. 10089. https://doi.org/10.1063/1.464397
  32. Nosé S. // J. Chem. Phys. 1984. V. 81. № 1. P. 511. https://doi.org/10.1063/1.447334
  33. Hoover W.G. // Phys. Rev. A. 1985. V. 31. № 3. P. 1695. https://doi.org/10.1103/PhysRevA.31.1695
  34. Wang J., Xiao P., Zhou M. et al. // J. Appl. Phys. 2010. V. 107. № 2. P. 023512. https://doi.org/10.1063/1.3277053
  35. Binks D.J., Grimes R.W. // J. Am. Ceram. Soc. 1993. V. 76. № 9. P. 2370. https://doi.org/10.1111/j.1151-2916.1993.tb07779.x
  36. Bergner A., Dolg M., Küchle W. et al. // Mol. Phys. 1993. V. 80. № 6. P. 1431. https://doi.org/10.1080/00268979300103121
  37. Dittmer A., Isak R., Neese F. et al. // Inorg. Chem. 2019. V. 58. № 14. P. 9303. https://doi.org/10.1021/acs.inorgehem.9b00994
  38. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158. https://doi.org/10.1063/1.478522
  39. Weigend F., Ahriches R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297. https://doi.org/10.1039/b508541a
  40. Deng X.Y., Liu G.H., Jing X.P. et al. // Int. J. Quantum Chem. 2014. V. 114. № 7. P. 468. https://doi.org/10.1002/qua.24593
  41. Grimme S., Antony J., Ehrlich S. et al. // J. Chem. Phys. 2010. V. 132. № 15. P. 154104. https://doi.org/10.1063/1.3382344
  42. Johnson E.R., Becke A.D. // J. Chem. Phys. 2005. V. 123. № 2. P. 024101. https://doi.org/10.1063/1.1949201
  43. ChemCraft — graphical software for visualization of quantum chemistry computations. Version 1.8, build 682. https://www.chemcraftprog.com
  44. Momma K., Izumi F. // J. Appl Crystallogr. 2011. V. 44. № 6. P. 1272. https://doi.org/10.1107/S0021889811038970
  45. Manbeck K.A., Boaz N.C., Bair N.C. et al. // J. Chem. Educ. 2011. V. 88. № 10. P. 1444. https://doi.org/10.1021/ed1010932
  46. Allen G., Dwek R.A. // Journal of the Chemical Society B: Physical Organic. 1966. P. 161. https://doi.org/10.1039/J29660000161
  47. Cai J., Ma Z., Wejinya U. et al. // J. Mater. Sci. 2019. V. 54. № 7. P. 5236. https://doi.org/10.1007/s10853-018-03260-3
  48. Malkin A.I., Popov D.A. // Physics of Metals and Metallography. 2022. V. 123. № 12. P. 1234. https://doi.org/10.1134/S0031918X22601585
  49. Malkin A.I. // Colloid Journal. 2012. V. 74. № 2. P. 223. https://doi.org/10.1134/S1061933X12020068

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025