Супрамолекулярные гибридные комплексы на основе октаэдрического йодидного кластера молибдена(II) и порфирината цинка(II)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Продемонстрирована возможность образования супрамолекулярных гибридов на основе двух фотосенсибилизаторов – октаэдрического йодидного кластера молибдена(II) с шестью терминальными изоникотинатными лигандами (Bu4N)2[{Mo6I8}(OOC–C5H4N)6] (PyMoC, С) и порфирината цинка(II) А4-типа (ZnTPP, P). Методами спектрофотометрического титрования и ЯМР показано, что формирование комплексов СPn (n = 1–6) происходит в растворах некоординирующих хлорорганических растворителей за счет образования координационных связей металл–N-лиганд между компонентами. Использование октаэдрического кластера в качестве гексатопного N-лиганда и лабильность связей Zn…NPy в совокупности приводят к образованию серии комплексов СPn (n = 1–6), находящихся в динамическом равновесии в растворе. Несмотря на это, удалось подобрать условия и получить монокристаллы индивидуальных форм CP4 + 2 и CP6 + 2, методом рентгеноструктурного анализа определено их строение. Установлено, что кластер PyMoC координирует четыре или шесть молекул ZnTPP соответственно, при этом обе структуры содержат две “экстрамолекулы” порфирината цинка(II), связанные с кластером за счет водородных связей между атомами кислорода изоникотинатных групп и протонами воды, аксиально координированной к порфириновому металлоцентру.

Об авторах

М. В. Волостных

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: marinavolostnykh@gmail.com
Россия, 119071, Москва, Ленинский пр-т, 31, корп. 4

П. А. Лобода

Московский государственный университет им. М.В. Ломоносова, факультет фундаментальной
физико-химической инженерии

Email: marinavolostnykh@gmail.com
Россия, 119234, Москва, ул. Колмогорова, 1с51

А. А. Синельщикова

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: marinavolostnykh@gmail.com
Россия, 119071, Москва, Ленинский пр-т, 31, корп. 4

П. В. Дороватовский

Национальный исследовательский центр “Курчатовский институт”

Email: marinavolostnykh@gmail.com
Россия, 123182, Москва, ул. Академика Курчатова, 1

Г. А. Киракосян

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН; Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: marinavolostnykh@gmail.com
Россия, 119071, Москва, Ленинский пр-т, 31, корп. 4; Россия, 119991, Москва, Ленинский пр-т, 31, корп. 1

М. А. Михайлов

Институт неорганической химии им. А.В. Николаева СО РАН

Email: marinavolostnykh@gmail.com
Россия, 630090, Новосибирск, пр-т Академика Лаврентьева, 3

М. Н. Соколов

Институт неорганической химии им. А.В. Николаева СО РАН

Email: marinavolostnykh@gmail.com
Россия, 630090, Новосибирск, пр-т Академика Лаврентьева, 3

Ю. Г. Горбунова

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН; Московский государственный университет им. М.В. Ломоносова, факультет фундаментальной
физико-химической инженерии; Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: marinavolostnykh@gmail.com
Россия, 119071, Москва, Ленинский пр-т, 31, корп. 4; Россия, 119234, Москва, ул. Колмогорова, 1с51; Россия, 119991, Москва, Ленинский пр-т, 31, корп. 1

Список литературы

  1. Scandola F., Chiorboli C., Prodi A. et al. // Coord. Chem. Rev. 2006. V. 250. № 11–12. P. 1471. https://doi.org/10.1016/j.ccr.2006.01.019
  2. La D.D., Ngo H.H., Nguyen D.D. et al. // Coord. Chem. Rev. 2022. V. 463. P. 214543. https://doi.org/10.1016/j.ccr.2022.214543
  3. Pöthig A., Casini A. // Theranostics. 2019. V. 9. № 11. P. 3150. https://doi.org/10.7150/thno.31828
  4. Baroncini M., Canton M., Casimiro L. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. № 42. P. 4589. https://doi.org/10.1002/ejic.201800923
  5. Antipin I.S., Alfimov M.V., Arslanov V.V. et al. // Russ. Chem. Rev. 2021. V. 90. № 8. P. 895. https://doi.org/10.1070/RCR5011
  6. Агафонов М.А., Александров Е.В., Артюхова Н.А. и др. // Журн. структур. химии. 2022. Т. 63. № 5. С. 535. https://doi.org/10.26902/JSC_id93211
  7. Drain C.M., Hupp J.T., Suslick K.S. et al. // J. Porphyr. Phthalocyanines. 2002. V. 6. № 4. P. 243. https://doi.org/10.1142/S1088424602000282
  8. Cook L.P., Brewer G., Wong-Ng W. // Crystals. 2017. V. 7. № 7. P. 223. https://doi.org/10.3390/cryst7070223
  9. Takagi S., Eguchi M., Tryk D. et al. // J. Photochem. Photobiol., C: Photochem. Rev. 2006. V. 7. № 2–3. P. 104. https://doi.org/10.1016/j.jphotochemrev.2006.04.002
  10. Koifman O.I., Ageeva T.A., Beletskaya I.P. et al. // Macroheterocycles. 2020. V. 13. № 4. P. 311. https://doi.org/10.6060/mhc200814k
  11. Yu J., Zhu S., Pang L. et al. // J. Chromatogr. A. 2018. V. 1540. P. 1. https://doi.org/10.1016/j.chroma.2018.02.006
  12. Neamţu M., Nădejde C., Hodoroaba V.D. et al. // Appl. Catal., B: Environ. 2018. V. 232. № 2010. P. 553. https://doi.org/10.1016/j.apcatb.2018.03.079
  13. D’Souza F., Ito O. // Coord. Chem. Rev. 2005. V. 249. № 13–14. P. 1410. https://doi.org/10.1016/j.ccr.2005.01.002
  14. Menilli L., Monteiro A.R., Lazzarotto S. et al. // Pharmaceutics. 2021. V. 13. № 9. P. 1512. https://doi.org/10.3390/pharmaceutics13091512
  15. Ksenofontov A.A., Bichan N.G., Khodov I.A. et al. // J. Mol. Liq. 2018. V. 269. P. 327. https://doi.org/10.1016/j.molliq.2018.08.069
  16. Ksenofontov A.A., Lukanov M.M., Bichan N.G. et al. // Dye. Pigment. 2021. V. 185. № A. P. 108918. https://doi.org/10.1016/j.dyepig.2020.108918
  17. Hu R., Zhai X., Ding Y. et al. // Chinese Chem. Lett. 2022. V. 33. № 5. P. 2715. https://doi.org/10.1016/j.cclet.2021.08.110
  18. Zenkevich E., Blaudeck T., Sheinin V. et al. // J. Mol. Struct. 2021. V. 1244. P. 131239. https://doi.org/10.1016/j.molstruc.2021.131239
  19. Mandal H., Chakali M., Venkatesan M. et al. // J. Phys. Chem. C. 2021. V. 125. № 8. P. 4750. https://doi.org/10.1021/acs.jpcc.0c08229
  20. Zhou Y., Lu Q., Liu Q. et al. // Adv. Funct. Mater. 2022. V. 32. № 15. P. 2112159. https://doi.org/10.1002/adfm.202112159
  21. Lamare R., Ruppert R., Boudon C. et al. // Chem. A. Eur. J. 2021. V. 27. № 65. P. 16071. https://doi.org/10.1002/chem.202102277
  22. Yang Y., Tao F., Zhang L. et al. // Chinese Chem. Lett. 2022. V. 33. № 5. P. 2625. https://doi.org/10.1016/j.cclet.2021.09.093
  23. Wang C., Cai M., Liu Y. et al. // J. Colloid Interface Sci. 2022. V. 605. P. 727. https://doi.org/10.1016/j.jcis.2021.07.137
  24. Yao B.-J., Zhang X.-M., Li F. et al. // ACS Appl. Nano Mater. 2020. V. 3. № 10. P. 10360. https://doi.org/10.1021/acsanm.0c02276
  25. Hajian R., Bahrami E. // Catal. Letters. 2022. V. 152. № 8. P. 2445. https://doi.org/10.1007/s10562-021-03827-x
  26. Zhu Y., Huang Y., Li Q. et al. // Inorg. Chem. 2020. V. 59. № 4. P. 2575. https://doi.org/10.1021/acs.inorgchem.9b03540
  27. Shehzad F.K., Zhou Y., Zhang L. et al. // J. Phys. Chem. C. 2018. V. 122. № 2. P. 1280. https://doi.org/10.1021/acs.jpcc.7b11244
  28. Xu J., Xue L.-J., Hou J.-L. et al. // Inorg. Chem. 2017. V. 56. № 14. P. 8036. https://doi.org/10.1021/acs.inorgchem.7b00775
  29. Allain C., Favette S., Chamoreau L. et al. // Eur. J. Inorg. Chem. 2008. V. 2008. № 22. P. 3433. https://doi.org/10.1002/ejic.200701331
  30. Chandra B.K.C., D’Souza F. // Coord. Chem. Rev. 2016. V. 322. P. 104. https://doi.org/10.1016/j.ccr.2016.05.012
  31. Volostnykh M.V., Mikhaylov M.A., Sinelshchikova A.A. et al. // Dalton Trans. 2019. V. 48. № 5. P. 1835. https://doi.org/10.1039/c8dt04452j
  32. Mikhailov M.A., Brylev K.A., Abramov P.A. et al. // Inorg. Chem. 2016. V. 55. № 17. P. 8437. https://doi.org/10.1021/acs.inorgchem.6b01042
  33. Fujii S., Tanioka E., Sasaki K. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 31. P. 2983. https://doi.org/10.1002/ejic.202000440
  34. Puche M., García-Aboal R., Mikhaylov M.A. et al. // Nanomaterials. 2020. V. 10. № 7. P. 1. https://doi.org/10.3390/nano10071259
  35. López-López N., Muñoz Resta I., De Llanos R. et al. // ACS Biomater. Sci. Eng. 2020. V. 6. № 12. P. 6995. https://doi.org/10.1021/acsbiomaterials.0c00992
  36. Mikhaylov M.A., Berezin A.S., Sukhikh T.S. et al. // J. Struct. Chem. 2022. V. 63. № 12. P. 2101. https://doi.org/10.1134/S0022476622120216
  37. Mikhailov M.A., Berezin A.S., Sukhikh T.S. et al. // J. Struct. Chem. 2021. V. 62. № 12. P. 1896. https://doi.org/10.1134/S002247662112009X
  38. Mikhailov M.A., Brylev K.A., Virovets A.V. et al. // New J. Chem. 2016. V. 40. № 2. P. 1162. https://doi.org/10.1039/C5NJ02246K
  39. Fabrizi de Biani F., Grigiotti E., Laschi F. et al. // Inorg. Chem. 2008. V. 47. № 12. P. 5425. https://doi.org/10.1021/ic7018428
  40. Satake A., Kobuke Y. // Tetrahedron. 2005. V. 61. № 1. P. 13. https://doi.org/10.1016/j.tet.2004.10.073
  41. Chichak K., Walsh M.C., Branda N.R. // Chem. Commun. 2000. № 10. P. 847. https://doi.org/10.1039/b001259i
  42. Gorbunova Y.G., Enakieva Y.Y., Sakharov S.G. et al. // J. Porphyr. Phthalocyanines. 2003. V. 7. № 12. P. 795. https://doi.org/10.1142/S1088424603000987
  43. Volostnykh M.V., Kirakosyan G.A., Sinelshchikova A.A. et al. // Dalton Trans. 2023. V. 52. № 16. P. 5354. https://doi.org/10.1039/D3DT00251A
  44. Armarego W.L.F., Chai C.L.L. // Purification of Organic Chemicals, in: Purif. Lab. Chem. Elsevier, 2009. P. 88. https://doi.org/10.1016/B978-1-85617-567-8.50012-3
  45. Kieboom A.P.G. // Recl. des Trav. Chim. des Pays-Bas. 2010. V. 107. № 12. P. 685. https://doi.org/10.1002/recl.19881071209
  46. Lindsey J.S., Schreiman I.C., Hsu H.C. et al. // J. Org. Chem. 1987. V. 52. № 5. P. 827. https://doi.org/10.1021/jo00381a022
  47. Renny J.S., Tomasevich L.L., Tallmadge E.H. et al. // Angew. Chem. Int. Ed. 2013. V. 52. № 46. P. 11998. https://doi.org/10.1002/anie.201304157
  48. Lazarenko V., Dorovatovskii P., Zubavichus Y. et al. // Crystals. 2017. V. 7. № 11. P. 325. https://doi.org/10.3390/cryst7110325
  49. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1. https://doi.org/10.1002/crat.201900184
  50. Kabsch W. // Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010. V. 66. № 2. P. 125. https://doi.org/10.1107/S0907444909047337
  51. Evans P. // Acta Crystallogr., Sect. D: Biol. Crystallogr. 2006. V. 62. № 1. P. 72. https://doi.org/10.1107/S0907444905036693
  52. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  53. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  54. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  55. Wang F., Xu L., Nawaz M.H. et al. // RSC Adv. 2014. V. 4. № 106. P. 61378. https://doi.org/10.1039/C4RA10087E
  56. Iwamoto H., Hori K., Fukazawa Y. // Tetrahedron Lett. 2005. V. 46. № 5. P. 731. https://doi.org/10.1016/j.tetlet.2004.12.028
  57. Harada K., Nguyen T.K.N., Grasset F. et al. // NPG Asia Mater. 2022. V. 14. № 1. P. 21. https://doi.org/10.1038/s41427-022-00366-8
  58. Mikhaylov M.A., Abramov P.A., Komarov V.Y. et al. // Polyhedron. 2017. V. 122. P. 241. https://doi.org/10.1016/j.poly.2016.11.011
  59. Vorotnikov Y.A., Efremova O.A., Novozhilov I.N. et al. // J. Mol. Struct. 2017. V. 1134. № 2017. P. 237. https://doi.org/10.1016/j.molstruc.2016.12.052
  60. Tat F.T., Zhou Z., MacMahon S. et al. // J. Org. Chem. 2004. V. 69. № 14. P. 4602. https://doi.org/10.1021/jo049671w

Дополнительные файлы


© М.В. Волостных, П.А. Лобода, А.А. Синельщикова, П.В. Дороватовский, Г.А. Киракосян, М.А. Михайлов, М.Н. Соколов, Ю.Г. Горбунова, 2023