ZINC GLYCERATE AS A PRECURSOR FOR THE PREPARATION OF NANOCRYSTALLINE ZnO WITH IMPROVED NO2 GAS SENSITIVITY
- 作者: Mokrushin A.S1, Nagornov I.A1, Dmitrieva S.A2, Simonenko N.P1, Simonenko E.P1
-
隶属关系:
- Karnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- D.I. Mendeleev Russian University of Chemical Technology
- 期: 卷 70, 编号 10 (2025)
- 页面: 1406-1416
- 栏目: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://pediatria.orscience.ru/0044-457X/article/view/697766
- DOI: https://doi.org/10.7868/S3034560X25100183
- ID: 697766
如何引用文章
详细
This study presents a simple and efficient method for synthesizing nanocrystalline zinc oxide using glycerate precursors. Zinc glycerates were obtained through thermal treatment of a solution of zinc acetylacetonate monohydrate in glycerol, followed by additional thermal processing, which resulted in the formation of nanocrystalline ZnO. The synthesized ZnO nanoparticles were characterized using XRD, SEM, and DTA/DSC techniques. The gas-sensing properties of ZnO toward a wide range of analyte gases were investigated. It was demonstrated that nanocrystalline ZnO exhibits high sensitivity and selectivity to NO2. The proposed approach opens new prospects for the development of cost-effective and efficient gas sensors based on semiconductor oxides.
作者简介
A. Mokrushin
Karnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: atryom.nano@gmail.com
Moscow, Russia
I. Nagornov
Karnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: atryom.nano@gmail.com
Moscow, Russia
S. Dmitrieva
D.I. Mendeleev Russian University of Chemical Technology
Email: atryom.nano@gmail.com
Moscow, Russia
N. Simonenko
Karnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: atryom.nano@gmail.com
Moscow, Russia
E. Simonenko
Karnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: atryom.nano@gmail.com
Moscow, Russia
参考
- Özgür Ü., Alivov Y.I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. № 4. P. 041301. https://doi.org/10.1063/1.1992666
- Look D.C.// Mater. Sci. Eng. B. 2001. V. 80. № 1–3. P. 383. https://doi.org/10.1016/S0921-5107(00)00604-8
- Thomas D.G., Lander J.J. // J. Phys. Chem. Solids. 1957. V. 2. № 4. P. 318. https://doi.org/10.1016/0022-3697(57)90077-X
- Reynolds D.C., Look D.C., Jogai B. et al. // Phys. Rev. B. 1999. V. 60. № 4. P. 2340. https://doi.org/10.1103/PhysRevB.60.2340
- Chen Y., Bagnall D.M., Koh H. et al. // J. Appl. Phys. 1998. V. 84. № 7. P. 3912. https://doi.org/10.1063/1.368595
- Mang, K. Reimann, S. Ribenacke // Solid State Commun. 1995. V. 94. № 4. P. 251. https://doi.org/10.1016/0038-1098(95)00054-2
- Janotti, C.G. Van de Walle // Rep. Prog. Phys. 2009. V. 72. № 12. P. 126501. https://doi.org/10.1088/0034-4885/72/12/126501
- Wang Z.L. // J. Phys. Condens. Matter. 2004. V. 16. № 25. P. R829. https://doi.org/10.1088/0953-8984/16/25/R01
- Huang M.H., Mao S., Feick H. et al. // Science. 2001. V. 292. № 5523. P. 1897. https://doi.org/10.1126/science.1060367
- Arnold M.S., Avouris P., Pan Z.W., Wang Z.L. // J. Phys. Chem. B. 2003. V. 107. № 3. P. 659. https://doi.org/10.1021/jp0271054
- Collins P.G., Arnold M.S., Avouris P. // Science. 2001. V. 292. № 5517. P. 706. https://doi.org/10.1126/science.1058782
- Schwab K., Henriksen E.A., Worlock J.M., Roukes M.L. // Nature. 2000. V. 404. № 6781. P. 974. https://doi.org/10.1038/35010065
- Comini E., Faglia G., Shevegliert G., Pan Z., Wang Z.L. // Appl. Phys. Lett. 2002. V. 81. № 10. P. 1869. https://doi.org/10.1063/1.1504867
- Zhao M.-H., Wang Z.-L., Mao S.X. // Nano Lett. 2004. V. 4. № 4. P. 587. https://doi.org/10.1021/nl035198a
- Wibowo M.A., Marsudi M.I., Amal M.I. et al. // RSC Adv. 2020. V. 10. № 69. P. 42838. https://doi.org/10.1039/D0RA07689A
- Keis K., Lindgren J., Lindquist S.-E., Hagfeldt A. // Langmuir. 2000. V. 16. № 10. P. 4688. https://doi.org/10.1021/la9912702
- Wang C., Yin L., Zhang L. et al. // Sensors. 2010. V. 10. № 3. P. 2088. https://doi.org/10.3390/s100302088
- Korotzenkov G. // Mater. Sci. Eng. R Rep. 2008. V. 61. № 1–6. P. 1. https://doi.org/10.1016/j.mscr.2008.02.001
- Lee J.-H. // Sens. Actuators, B. 2009. V. 140. № 1. P. 319. https://doi.org/10.1016/j.snb.2009.04.026
- Aygin S., Cann D. // Sens. Actuators, B. 2005. V. 106. № 2. P. 837. https://doi.org/10.1016/j.snb.2004.10.004
- Jing Z., Zhan J. // Adv. Mater. 2008. V. 20. № 23. P. 4547. https://doi.org/10.1002/adma.200800243
- Rothschild Y. Komem // J. Appl. Phys. 2004. V. 95. № 11. P. 6374. https://doi.org/10.1063/1.1728314
- Yu J.H., Choi G.M. // Sens. Actuators, B. 1998. V. 52. № 3. P. 251. https://doi.org/10.1016/S0925-4005(98)00275-5
- Choi M.S., Kim M.Y., Mirzaei A. et al. // Appl. Surf. Sci. 2021. V. 568. P. 150910. https://doi.org/10.1016/j.apsusc.2021.150910
- Leileveld J., Klingmüller K., Pozzer A. et al. // Proc. Natl. Acad. Sci. U.S.A. 2019. V. 116. № 15. P. 7192. https://doi.org/10.1073/pnas.1819989116
- Brunekreef B., Holgate S.T. // Lancet. 2002. V. 360. № 9341. P. 1233. https://doi.org/10.1016/S0140-6736(02)11274-8
- HorennansF., Menus J., Bonggers E. et al. // Sens. Actuators, B. 2010. V. 148. № 2. P. 392. https://doi.org/10.1016/j.snb.2010.05.003
- Xuan J., Zhao G., Sun M. et al. // RSC Adv. 2020. V. 10. № 65. P. 39786. https://doi.org/10.1039/D0RA073281
- Zhu L., Zeng W., Li Y. // Mater. Lett. 2018. V. 228. P. 331. https://doi.org/10.1016/j.matlet.2018.06.049
- Ong C.B., Ng L.Y., Mohammad A.W. // Renew. Sustain. Energy Rev. 2018. V. 81. P. 536. https://doi.org/10.1016/j.rser.2017.08.020
- Sakai G., Matsunaga N., Shimanoe K., Yamazoe N. // Sens. Actuators, B. 2001. V. 80. № 2. P. 125. https://doi.org/10.1016/S0925-4005(01)00890-5
- Xia H., Xu Q., Zhang J. // Nano-Micro Lett. 2018. V. 10. № 4. P. 66. https://doi.org/10.1007/s40820-018-0219-z
- Liu J., Gao F., Wu L. et al. // Appl. Phys. A. 2020. V. 126. № 6. P. 454. https://doi.org/10.1007/s00339-020-03643-x
- Mrabet, N. Mahdhi, A. Boukhachen, M. Amlouk, T. Manoubi // J. Alloys Compd. 2016. V. 688. P. 122. https://doi.org/10.1016/j.jallcom.2016.06.286
- Livage J., Henry M., Sanchez C. // Prog. Solid State Chem. 1988. V. 18. № 4. P. 259. https://doi.org/10.1016/0079-6786(88)90005-2
- Segovia M., Sotomayor C., Gonzalez G., Benavente E. // Mol. Cryst. Liq. Cryst. 2012. V. 555. № 1. P. 40. https://doi.org/10.1080/15421406.2012.634363
- Choy K. // Prog. Mater. Sci. 2003. V. 48. № 2. P. 57. https://doi.org/10.1016/S0079-6425(01)00009-3
- Zahra S., Bukhari H., Qaisar S., Sheikh A., Amin A. // BMC Chem. 2022. V. 16. № 1. P. 104. https://doi.org/10.1186/s13065-022-00900-3
- Greiner, J.H. Wendoff // Angew. Chem. Int. Ed. 2007. V. 46. № 30. P. 5670. https://doi.org/10.1002/anie.200604646
- M.I. Ikin, V.F. Gromov, G.N. Gerasimov et al. // Micromachines. 2023. V. 14. № 9. P. 1685. https://doi.org/10.3390/mi14091685
- Droepen E.K., Wee B.S., Chin S.F., Kok K.Y. // Biointerface Res. Appl. Chem. 2021. V. 12. № 1. P. 4261. https://doi.org/10.33263/BRIAC123.42614292
- Dien N.D. // Adv. Mater. Sci. 2019. V. 4. № 2. P. 1. https://doi.org/10.15761/AMS.1000147
- Yukhin Y.M., Titkov A.I., Logutenko O.A., Mishchenko K.V., Lyakhov N.Z. // Russ. J. Gen. Chem. 2017. V. 87. № 12. P. 2870. https://doi.org/10.1134/S1070363217120180
- Pazyrev I.S., Andreikov E.I., Zakharova G.S., Podval’naya N.V., Osipova V.A. // Russ. Chem. Bull. 2021. V. 70. № 4. P. 805. https://doi.org/10.1007/s11172-021-3153-z
- Kim H.-B., Jeong D.-W., Jang D.-J. // CrystEngComm. 2016. V. 18. № 5. P. 898. https://doi.org/10.1039/C5CE02334C
- Zahra S., Shahid W., Amin C.A., Zahra S., Kanwal B. // BMC Chem. 2022. V. 16. № 1. P. 105. https://doi.org/10.1186/s13065-022-00898-8
- Zhang P., Liu L., Fan M., Dong Y., Jiang P. // RSC Adv. 2016. V. 6. № 80. P. 76223. https://doi.org/10.1039/C6RA14288E
- Zhang S., Yang P., Zhang A., Shi R., Zhu Y. // CrystEngComm. 2013. V. 15. № 43. P. 9090. https://doi.org/10.1039/c3ce41218k
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 11. P. 1415. https://doi.org/10.1134/S0036023617110195
- Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Ceram. Int. 2020. V. 46. № 6. P. 7756. https://doi.org/10.1016/j.ceramint.2019.11.279
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 11. P. 1519. https://doi.org/10.1134/S0036023618110189
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 11. P. 1415. https://doi.org/10.1134/S0036023617110195
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 11. P. 1519. https://doi.org/10.1134/S0036023618110189
- Mokrushin A.S., Nagornov I.A., Simonenko T.L. et al. // Appl. Surf. Sci. 2022. V. 589. P. 152974. https://doi.org/10.1016/j.apsusc.2022.152974
- Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. V. 69. № 5. P. 604. https://doi.org/10.1134/S0036023624600850
- Mokrushin A.S., Nagornov I.A., Simonenko T.L. et al. // Mater. Sci. Eng. B. 2021. V. 271. P. 115233. https://doi.org/10.1016/j.mseb.2021.115233
- Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // Ceram. Int. 2023. V. 49. № 11. P. 17600. https://doi.org/10.1016/j.ceramint.2023.02.126
- Ji H., Zeng W., Li Y. // Nanoscale. 2019. V. 11. № 47. P. 22664. https://doi.org/10.1039/C9NR07699A
- Jeong S., Kim J., Lee J. // Adv. Mater. 2020. V. 32. № 51. P. 2002075. https://doi.org/10.1002/adma.202002075
- Chen M., Wang Z., Han D., Gu F., Guo G. // J. Phys. Chem. C. 2011. V. 115. № 26. P. 12763. https://doi.org/10.1021/jp201816d
- Marikutsa, M. Rumyantseva, E.A. Konstantinova, A. Gaskov // Sensors. 2021. V. 21. № 7. P. 2554. https://doi.org/10.3390/s21072554
补充文件
