Extraction of REE(III) with Mixtures of Picrolonic Acid and Bis-Carbamoylmethylphosphine Oxides

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It was found that the extraction of REE(III) from weakly acidic chloride solutions into an organic phase containing bis-carbamoylmethylphosphine oxides increases significantly in the presence of picrolonic acid. The stoichiometry of the extracted complexes was determined, the effect of the aqueous phase composition, the nature of the organic solvent and the structure of bis-CMPO on the efficiency of metal ion extraction into the organic phase was considered. The use of picrolonic acid as a chelating component of the extraction mixture leads to a significantly greater increase in the extraction of REE(III) compared to 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone.

Texto integral

Acesso é fechado

Sobre autores

Alexander Turanov

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: karan@iptm.ru
ORCID ID: 0000-0002-5064-191X
Rússia, Chernogolovka

Vasily Karandashev

Institute of Microelectronics Technology and High-Purity Materials of the Russian Academy of Sciences

Email: karan@iptm.ru
ORCID ID: 0000-0003-0684-272X
Rússia, Chernogolovka

Zhanna Burmiy

Institute of Microelectronics Technology and High-Purity Materials of the Russian Academy of Sciences

Email: karan@iptm.ru
ORCID ID: 0000-0003-4195-9392
Rússia, Chernogolovka

Bibliografia

  1. Balaram V. // Geosci. Front. 2019. Vol. 10. P. 1285. doi: 10.1016/j.gsf.2018.12.005
  2. Hidayah N.N., Abidin S.Z. // Miner. Eng. 2018. Vol. 121. P. 146. doi: 10.1016/j.mineng.2018.03.018
  3. Swain N., Mishra S. // J. Clean. Prod. 2019. Vol. 220. P. 884. doi: 10.1016/j.jclepro.2019.02.094
  4. Wilson A.M., Bailey P.J., Tasker P.A., Turkington J.R., Grant R.A., Love J.B. // Chem. Soc. Rev. 2014. Vol. 43. N 1. P. 123. doi: 10.1039/C3CS60275C
  5. Werner E.J., Biros S.M. // Org. Chem. Front. 2019. Vol. 6. N 12. P. 2067. doi: 10.1039/c9qo00242a
  6. Аляпышев М.Ю., Бабаин В.А., Устынюк Ю.А. // Усп. хим. 2016. Т. 85. № 9. С. 943; Alyapyshev M.Yu., Babain V.A., Ustynyuk Yu.A. // Russ. Chem. Rev. 2016. Vol. 85. N 9. P. 943. doi: 10.1070/RCR4588
  7. Leoncini A., Huskens J., Verboom W. // Chem. Soc. Rev. 2017. Vol. 46. P. 7229. doi: 10.1039/C7CS00574A
  8. Ansari S.A., Pathak P.N., Mohapatra P.K., Manchanda V.K. // Chem. Rev. 2012. Vol. 112. P. 1751. doi: 10.1021/cr200002f
  9. Liu T., Chen J. // Sep. Purif. Technol. 2021. Vol. 276. Art. 119263. doi: 10.1016/j.seppur.2021.119263
  10. Xie F., Zhang T.A., Dreisinger D., Doyle F. // Miner. Eng. 2014. Vol. 56. P. 10. doi: 10.1016/j.mineng.2013.10.021
  11. Wei H., Li Y., Zhang, Z., Liao W. // Hydrometallurgy. 2020. Vol. 191. Art. 105242.
  12. Li D. // J. Rare Earths. 2019 Vol. 37. P. 468. doi 10.1016/ j/jre.2018.07.016
  13. Belova V.V., Tsareva Y.V., Zakhodyaeva Y.A., Ivanov V.K., Voshkin A.A. // Processes. 2021. Vol. 9. Art. 2222. doi: 10.3390/pr912222
  14. Belova V.V., Tsareva Y.V. // Mendeleev Commun. 2021. Vol. 31. P. 116. doi: 10.1016/j.mencom.2021.01.036
  15. Белова В.В., Мартынова М.М., Баулин В.Е., Баулин Д.В. // ЖНХ. 2019. Т. 64. № 8. С. 894; Belova V.V., Martynova M.M., Baulin V.E., Baulin D.V. // Russ. J. Inorg. Chem. 2019. Vol. 64. P. 1059. doi: 10.1034/S0036023619080023
  16. Bond A.H., Dietz M.L., Chiarizia R. // Ind. Eng. Chem. Res. 2000. Vol. 39. P. 3442. doi: 10.1021/ie000356j
  17. Atanassova M. // Separations. 2022. Vol. 9. Art. 371. doi: 10.3390/separations9110371
  18. Atanassova M., Kurteva V. // RSC Adv. 2016. Vol. 6. P. 11303. doi: 10.1039/c5ra22306g
  19. Золотов Ю.А., Кузьмин Н.М. Экстракция металлов ацилпиразолонами. М.: Наука, 1977.
  20. Rehman H., Ali A., Anwar J., Ahmed S. // Radiochim. Acta. 2006. Vol. 94. P. 475. doi: 10.1524/ract.2006.94.8.475
  21. Kuvatov Yu., Murinov Yu.I., Nikitin Yu.E., Kolyadina O.A., Myasoedov B.F. // Inorg. Chim. Acta. 1984. Vol. 94. P. 76. doi: 10.1016/S0020-1693(00)94538-9
  22. Rehman H., Ali A., Waquar F. // J. Radioanal. Nucl. Chem. 2015. Vol. 303. P. 139. doi: 10.1007/s10967-014-3440-3
  23. Мясоедов Б.Ф., Молочникова Н.П., Куватов Ю.Г., Никитин Ю.Е. // Радиохимия. 1981. Т. 23. № 1. С. 43.
  24. Fazil S., Menaa F., Liaqat K., Khan M.H., Rehman W., Khan M.M., Siraj U.l. Haq, Sajid M., Farooq M., Menaa B., Hafeez M. // Comb. Chem. High Throughput Screen. 2022. Vol. 25. P. 861. doi: 10.2174/1386207324666210210105511.
  25. Turanov A.N., Karandashev V.K. // Solvent Extr. Ion Exch. 2017. Vol. 35. P. 104. doi: 10.1080/07366299.2017.1288044
  26. Туранов А.Н., Карандашев В.К., Шарова Е.В., Артюшин О.И., Одинец И.Л. // Радиохимия. 2013. Т. 55. С. 156; Turanov A.N., Karandashev V.K., Sharova E.V., Artyushin O.I., Odinets I.L. // Radiochemistry. 2013. Vol. 55. P. 203. doi: 10.1134/S1066362213020100
  27. Dam H.H., Reinhoudt D.N., Verboom W. // Chem. Soc. Rev. 2007. Vol. 36. P. 367. doi: 10.1039/B603847F
  28. Varbanov S., Tashev E., Vassilev N., Atanassova M., Lachkova V., Tosheva T., Shenkova S., Dukovn I. // Polyhedron. 2017. Vol. 134. P. 135. doi: 10.1016/j.poly.2017.06.013
  29. Turanov A.N., Matveeva A.G., Kudryantsev I.Yu., Pasechnik M.P., Matveev S.V., Godovikova M.I., Baulina T.V., Karandashev V.K., Brel V.K. // Polyhedron. 2019. Vol. 161. P. 276. doi: 10.1016/j.poly.2019.01.036
  30. Туранов А.Н., Карандашев В.К., Яркевич А.Н. // Радиохимия. 2021. Т. 63. С. 356; Turanov A.N., Karandashev V.K., Yarkevich A.N. // Radiochemistry. 2021. Vol. 63. P. 454. doi: 10.1134/S1066362221040081
  31. Osman M.M., Abou Ali S.A, Ali G.Y. // Pak. J. Sci. Inf. Res. 1984. Vol. 27. P. 85.
  32. Чмутова М.К., Литвина М.Н., Прибылова Г.А., Нестерова Н.П., Клименко В.Е., Мясоедов Б.Ф. // Радиохимия. 1995. Т. 37. С. 430.
  33. Horwitz E.P., Martin K.A., Diamond H., Kaplan L. // Solv. Extr. Ion Exch. 1986. Vol. 4. N 3. P. 449. doi: 10.1080/07366298608917877
  34. Atanassova M., Dukov I. // Acta Chim. Slov. 2006. Vol. 53. P. 457.
  35. Turanov A.N., Karandashev V.K., Kharlamov A.V., Bondarenko N.A. // Solv. Extr. Ion Exch. 2014. Vol.32. P. 492. doi: 10.1080/07366299.2014.908584
  36. Яркевич А.Н., Брель В.К., Махаева Г.Ф., Серебрякова О.Г., Болтнева Н.П., Ковалева Н.В. // ЖОХ. 2015. Т. 85. № 7. С. 1120; Yarkevich A.N., Brel V.K., Makhaeva G.F., Serebryakova O.G., Boltneva N.P., Kovaleva N.V. // Russ. J. Gen. Chem. 2015. Vol. 85. N 7. P. 1644. doi: 10.1134/S1070363215070129
  37. Туранов А.Н., Карандашев В.К., Харитонов А.В., Лежнев А.Н., Сафронова З.В., Яркевич А.Н., Цветков Е.Н. // ЖОХ. 1999. Т. 69. № 7. С. 1109; Turanov A.N., Karandashev V.K., Kharitonov A.N., Lezhnev A.N., Safronova Z.V., Yarkevich A.N., Tsvetkov E.N. // Russ. J. Gen. Chem. 1999. Vol. 69. N 7. P. 1068.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1.

Baixar (159KB)
3. Fig. 1. Distribution coefficients of REE(III) during extraction from 0.1 mol/L HCl solutions by isomolar mixtures of compound 2 and picrolonic acid in dichloroethane. [2] + [HP] = 0.005 mol/l.

Baixar (106KB)
4. Fig. 2. Distribution coefficients of REE(III) during extraction from 0.3 mol/L HCl solutions with solutions of a mixture of 0.002 mol/L compound 2 and 0.01 mol/L picrolonic acid in organic solvents.

Baixar (91KB)
5. Fig. 3. Distribution coefficients of REE(III) during extraction from 0.25 mol/L HCl solutions with solutions of 0.0025 mol/L compounds 1-4 or 0.005 mol/L carbamoylmethylphosphinoxide 5 in dichloroethane containing 0.01 mol/L picrolonic acid.

Baixar (103KB)
6. Fig. 4. Dependence of REE(III) distribution coefficients on the concentration of picrolonic acid in dichloroethane containing 0.0025 mol/L compound 2 during extraction from 0.25 mol/L HCl solutions.

Baixar (99KB)
7. Fig. 5. Dependence of REE(III) distribution coefficients on the concentration of compound 2 in dichloroethane containing 0.01 mol/L picrolonic acid during extraction from 0.25 mol/L HCl solutions.

Baixar (109KB)
8. Fig. 6. Dependence of REE(III) distribution coefficients on HCl concentration in the aqueous phase during extraction with solutions of a mixture of 0.0025 mol/L compound 2 and 0.01 mol/L picrolonic acid in dichloroethane.

Baixar (123KB)
9. Fig. 7. Dependence of REE(III) distribution coefficients on the concentration of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (HPy) in dichloroethane containing 0.005 mol/L of compound 2 during extraction from solutions with pH = 2.0.

Baixar (121KB)
10. Fig. 8. Dependence of REE(III) distribution coefficients on the concentration of compound 2 in dichloroethane containing 0.03 mol/L 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone during extraction from solutions with pH = 2.0.

Baixar (104KB)
11. Fig. 9. Dependence of REE(III) distribution coefficients on pH of the aqueous phase during extraction with solutions of a mixture of 0.005 mol/L compound 2 and 0.03 mol/L 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone in dichloroethane.

Baixar (127KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025