АЛГОРИТМЫ РЕШЕНИЯ КУЛОНОВСКОЙ ЗАДАЧИ ДВУХ ЦЕНТРОВ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Представлены новые алгоритмы решения кулоновской задачи двух центров дискретного и непрерывного спектров в вытянутых сфероидальных координатах с разделением независимых переменных. Собственные значения энергии и константы разделения, а также собственные функции дискретного спектра вычисляются методом секущих и методом конечных элементов (МКЭ) на подходящей сетке с вещественным параметром – расстоянием между кулоновскими центрами. На каждом шаге метода секущих собственные решения дискретного спектра вычисляются с помощью программы КАNТВР 5М, реализующей МКЭ в системе Maple. Для задачи непрерывного спектра (при фиксированном собственном значении энергии) достаточно решить задачу на собственные значения для квазиуглового уравнения относительно константы разделения и использовать ее при решении краевой задачи для квазирадиального уравнения относительно неизвестного фазового сдвига и собственной функции с помощью программы КАNТВР 5М. Результаты тестовых расчетов согласуются с эталонными расчетами, выполненными программами, реализующими альтернативные методы на языке FORTRAN, с требуемой точностью. Библ. 41. Фиг. 7. Табл. 3.

Об авторах

Х. Л Лыонг

Хошиминский педагогический университет

Email: haill@hcmue.edu.vn
Хошимин, Вьетнам

А. И Муратова

Тверской государственный университет

Тверь, Россия

О. О Ковалёв

Объединенный институт ядерных исследований; Государственный университет "Дубна"

Дубна, Россия; Дубна, Россия

А. А Гусев

Объединенный институт ядерных исследований; Государственный университет "Дубна"; Монгольский университет науки и технологии

Дубна, Россия; Дубна, Россия; Улан-Батор, Монголия

В. Л Дербов

Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского

Саратов, Россия

С. И Виницкий

Объединенный институт ядерных исследований; Российский университет дружбы народов (РУДН)

Дубна, Россия; Москва, Россия

Список литературы

  1. Комаров И.В., Пономарев Л.И., Славянов С.Ю. Сфероидальные и кулоновские сфероидальные функции. М.: Наука, 1976.
  2. Славянов С.Ю., Лэй В. Специальные функции: Единая теория, основанная на сингулярностях. СанктПетербург: Невский диалект, 2002.
  3. Jaffe B.M. Zur Theorie des Wasserstoffmolekulions // Z. Phyzik. 1933. V. 87. P. 535.
  4. Baber W.G., Hasse H.R. The two center problem in wave quantum mechanics // Proc. Cambr. Phil. Soc. 1935. V. 31. P. 564.
  5. Peek J.M. Eigenparameters for the 1sσg and 2pσu Orbitals of H+2 // J. Chem. Phys. 1965. V. 43. P. 3004.
  6. Madsen M.M., Peek J.M. Eigenparameters for the Lowest Twenty Electronic States of the Hydrogen Molecule Ion // Atomic Data. 1971. V. 2. P. 171.
  7. Пономарев Л.И., Пузынина Т.П. Задача двух центров в квантовой механике. II Математическая часть // Ж. вычисл. матем. и матем. физ. 1968. Т. 8.№6. С. 1256.
  8. Puzynina T.P. TERM–Program for Calculation of Characteristic Constants of Problems for System Two Center Problem in Quantum Mechanics // Collection of Scientific Papers in Collaboration of JINR, KFKI-77-12, Dubna, USSR and Central Research Institute for Physics, Hungary, Budapest (1977).
  9. Трускова Н.Ф. Вычисление с необходимой точностью собственных значений и собственных функций двухцентровой модели в квантовой механике // Сообщение ОИЯИ. 1976.№P11-10207.
  10. Abramov D.I., Slavyanov S.Yu. The two Coulomb centers problem at small intercentre separations // J. Phys. B. 1978. V. 11. P. 2229.
  11. Виницкий С.И., Пономарев Л.И. Адиабатическое представление в задаче трех тел с кулоновским взаимодействием // Физ. элем. частиц ат. ядра. 1982. V. 13.№6. P. 1336.
  12. Виницкий С.И., Пономарев Л.И., Пузынина Т.П. Задача двух центров в квантовой механике. IX. Алгоритм вычисления матричных элементов с m ̸= 0 // Сообщение ОИЯИ 1983.№Р4-83-498.
  13. Ponomarev L.I., Puzynina T.P. Tables of the Effective Potentials for the Three-Body Problem with the Coulomb Interaction in the Adiabatic Representation // Communication of JINR. 1983. No. E4-83-778,
  14. Chuluunbaatar O., Gusev A.A., Gerdt V.P., Rostovtsev V.A., Vinitsky S.I., Abrashkevich A.G., Kaschiev M.S., Serov V.V. POTHMF: A program for computing potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field // Comput. Phys. Commun. 2008. V. 178. P. 301.
  15. Скороходов С.Л., Христофоров Д.В. Вычисление точек ветвления собственных значений кулоновского сфероидального волнового уравнения // Ж. вычисл. матем. и матем. физ. 2007. Т. 47.№11. С. 1800.
  16. Gusev A.A., Solov’ev E.A., Vinitsky S.I. ARSENY: A program for computing inelastic transitions via hidden crossings in one-electron atomic ion–ion collisions with classical description of nuclear motion // Comput. Phys. Commun. 2023. V. 286. P. 108662.
  17. Ponomarev L.I., Somov L.N. The Wave Functions of Continuum for the Two–Center Problem in Quantum Mechanics // J. Comput. Phys. 1976. V. 20. P. 183.
  18. Abramov D.I., Kazakov A.Ya., Ponomarev L.I., Slavyanov S.Yu., Somov L.N. Phase shifts in the Coulomb two-centre problem // J. Phys. B. 1979. V. 12. P. 1761.
  19. Rankin J., Thorson W.R. Continuum wave functions for the two-center, one-electron system // J. Comput. Phys. 1979. V. 32. P. 437.
  20. Nakamura H., Takagi H. Two-centre Coulomb phaseshifts and radial functions // Tech. Rep. 1980. IPPJ-AM–16. Japan.
  21. Великов В.П., Иванов К.И., Маринов А.Т. Расчет фаз двухцентрового кулоновского рассеяния с использованием асимптотических разложений для нерегулярных кулоновских сфероидальных функций c-типа // Сообщение ОИЯИ. 1983.№Р4-83-135.
  22. Tergiman Y.S. Continuum wave functions and phase shifts for the one-electron state of the Coulomb two-center problem // Phys. Rev. A. 1993. V. 48. P. 88.
  23. Hadinger G., Aubert-Frcon M., Hadinger G. Continuum wavefunctions for one-electron two-centre molecular ions from the Killingbeck-Miller method // J. Phys. B At. Mol. Opt. Phys. 1996. V. 29. P. 2951.
  24. Singor A., Savage J.S., Bray I., Schneider B.I., Fursa D.V. Continuum solutions to the two–center Coulomb problem in prolate spheroidal coordinates // Comput. Phys. Commun. 2023. V. 282. P. 108514.
  25. Cayford J.K., Fimple W.R., Unger D.G., White S.P. A finite-difference Newton-Raphson solution of the two-center electronic Schrodinger equation // J. Comput. Phys. 1974. V. 16. P. 259.
  26. Pavlov D.V., Puzynin I.V., Vinitsky S.I. Discrete Spectrum of the Two-Center Problem of pHe+ Atomcule // Communication JINR 1999. No. E4-99-141.
  27. Pavlov D.V., Puzynin I.V., Joulakian B.B., Vinitsky S.I. Wave Functions of Continuous Spectrum of the Coulomb Two-Center Problem // J. Comput. Meth. Sci. Eng. 2002. V. 2. P. 261.
  28. Serov V.V., Puzynin I.V., Joulakian B.B., Vinitsky S.I. (e, 2e) Ionization of H+2 by Fast Electron Impact: Application of the Exact Nonrelativistic Two-Center Continuum Wave // Phys. Rev. A. 2002. V. 65. P. 062708.
  29. Серов В.В., Дербов В.Л., Сергеева Т.А., Виницкий С.И. Современные методы расчета фотоионизации и ионизации электронным ударом двухэлектронных атомов и молекул // Физика частиц и ядра. 2013. V. 44. P. 757.
  30. Бате К.-Ю. Методы конечных элементов М.: Физматлит, 2010.
  31. Chuluunbaatar O., Gusev A.A., Vinitsky S.I., Abrashkevich A.G. ODPEVP: A program for computing eigenvalues and eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm–Liouville problem // Comput. Phys. Comm. 2009. V. 180. P. 1358.
  32. Liang T., McCurdy C.W., Rescigno T.N. Grid-based methods for diatomic quantum scattering problems: A finiteelement discrete-variable representation in prolate spheroidal coordinates // Phys. Rev. A. 2009. V. 79. P. 012719.
  33. Chuluunbaatar G., Gusev A.A., Derbov V.L., Vinitsky S.I., Chuluunbaatar O., Hai L.L., Gerdt V.P. A Maple implementation of the finite element method for solving boundary-value problems for systems of second-order ordinary differential equations // Commun. Comput. Inform. Sci. 2021. V. 1414. P. 152.
  34. Gusev A.A., Hai L.L., Chuluunbaatar O., Vinitsky S.I. KANTBP 4M – program for solving boundary problems of the self-adjoint system of ordinary second order differential equations // JINRLIB. JINR. 2015. [http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m/indexe.html]
  35. Maplesoft. https://www.maplesoft.com
  36. Абрамовиц М., Стиган И. Справочник по специальным функциям. М.: Наука, 1979.
  37. Бете Г.А., Солпитер Э.Э. Квантовая механика атомов с одним и двумя электронами. М.: ГИФМЛ, 1960.
  38. Barnett A.R., Feng D.H., Steed J.W., Goldfarb L.J.B. Coulomb wave functions for all real η and ρ // Comput. Phys. Commun. 1974. V. 8. P. 377.
  39. Chuluunbaatar O., Gusev A.A., Vinitsky S.I., Abrashkevich A.G., Wen P.W., Lin C.J. KANTBP 3.1: A program for computing energy levels, reflection and transmission matrices, and corresponding wave functions in the coupledchannel and adiabatic approaches // Comput. Phys. Commun. 2022. V. 278. P. 108397.
  40. Соловьев Е.А. Неадиабатические переходы при атомных столкновениях // УФН 1989. V. 32. P. 228.
  41. Соловьев Е.А. Новые подходы в квантовой физике. М.: Физматлит, 2019.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025