New Manganese(II) Coordination Compounds with 4-{[(1H-Pyrrol-2-yl)methylene]amino}-4H-1,2,4-triazole

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The reaction of manganese(II) chloride with the azomethine ligand 4-{[(1H-pyrrol-2-yl)methylene]amino}-4H-1,2,4-triazole (HPyrtrz) yielded crystals of the 1D-polymeric compound [MnII(HPyrtrz)(H2O)Cl2]n (I). The addition of the co-ligand 1,10-phenanthroline (phen) to the synthesis of I was found to led to the sequential crystallization of two products, namely, the 1D-polymeric compound [MnII(Phen)Cl2]n (II) and the mononuclear complex [MnII(phen)2Cl2] HPyrtrz (II). Complex III was found to be isolated as a single product in the reaction of compound I with phen or in the reaction of the known complex [MnII(Phen)2Cl2] with HPyrtrz, respectively. The crystal structures of compounds I-III were determined by single-crystal X-ray diffraction (CIF files CCDC № 2339139 (I), № 2344064 (II), № 2339140 (III)). For I and III, antimicrobial activity was studied against E. coli and S. aureus bacterial strains and Penicillium italicum Wehmer mold. According to the temperature dependence of magnetic susceptibility, antiferromagnetic exchange interactions between Mn2+ ions (J = –2.69 cm–1) are realized in compound I. Spectral-luminescent studies showed that HPyrtrz, I and III exhibit blue luminescence in the solid phase.

Texto integral

Acesso é fechado

Sobre autores

A. Bovkunov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Rússia, Moscow

E. Bazhina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: bazhina@igic.ras.ru
Rússia, Moscow

M. Shmelev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Rússia, Moscow

N. Gogoleva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Rússia, Moscow

A. Anisimov

HSE University

Email: bazhina@igic.ras.ru
Rússia, Moscow

S. Kottsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Rússia, Moscow

K. Babeshkin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Rússia, Moscow

N. Efimov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Rússia, Moscow

M. Metlin

Lebedev Physical Institute, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Rússia, Moscow

I. Taydakov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Rússia, Moscow

L. Fetisov

North-Caucasian Zonal Scientific Research Veterinary Institute, Federal Rostov Agricultural Research Centre

Email: bazhina@igic.ras.ru
Rússia, Novocherkassk

A. Svyatogorova

North-Caucasian Zonal Scientific Research Veterinary Institute, Federal Rostov Agricultural Research Centre

Email: bazhina@igic.ras.ru
Rússia, Novocherkassk

A. Zubenko

North-Caucasian Zonal Scientific Research Veterinary Institute, Federal Rostov Agricultural Research Centre

Email: bazhina@igic.ras.ru
Rússia, Novocherkassk

M. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Rússia, Moscow

I. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Rússia, Moscow

Bibliografia

  1. Haque S., Tripathy S., Patra C.R. // Nanoscale. 2021. V. 13. P. 16405.
  2. Ali B., Iqbal M.A. // ChemistrySelect. 2017. V. 2. P. 1586.
  3. Cheng Y.-Z., Lv L.-L., Zhang L.-L. et al. // J. Mol. Struct. 2021. V. 1228 P. 129745.
  4. Loginova N.V., Harbatsevich H.I., Osipovich N.P. et al. // Curr. Med. Сhem. 2020. V. 27. P. 5213.
  5. Freeland-Graves J.H., Bose T., Karbassian A. // Metallotherapeutic drugs and metal-based diagnostic agents: the use of metals in medicine / eds. M. Gielen, E.R.T. Tiekink. Chichester: John Wiley & Sons, Ltd, 2005. P. 159.
  6. Kongot M., Reddy D. S., Singh V. et al. // Spectroc. Acta 2020. V. 231. P. 118123.
  7. Saleem S., Parveen B., Abbas K. et al. // Appl. Organomet. Chem. 2023. V. 37. P. e7234.
  8. Belaid S., Landreau A., Djebbar S. et al. // J. Inorg. Biochem. 2008. V. 102. P. 63.
  9. Saleh M.G.A., El-Sayed W.A., Zayed E.M. et al. // Appl. Organomet. Chem. 2024. V. 38. Art. e7397.
  10. Kubens L., Truong K.-N., Lehmann C.W. et al. // Eur. J. Org. Chem. 2023. V. 29. P. e202301721.
  11. Seeger M., Otto W., Flick W. et al. // Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co., 2012. P. 41.
  12. Zheng R., Guo J., Cai X. et al. // Colloids Surf. B. 2022. V. 213. P. 112432.
  13. Henoumont C., Devreux M., Laurent S. // Molecules. 2023. V. 28. P. 7275.
  14. Cloyd R.A., Koren S.A., Abisambra J.F. // Front. Aging Neurosci. 2018. V. 10. P. 403.
  15. Silva A.C., Lee J.H., Aoki I., Koretsky A.P. // NMR Biomed. 2004. V. 17. P. 532.
  16. Gao C., Zhang X., Liang W. et al. // Inorg. Chem. Commun. 2023. V. 155. P. 111031.
  17. Qin Y., She P., Huang X. et al. // Coord. Chem. Rev. 2020. V. 416. P. 213331.
  18. Давыдова М.П., Багрянская И.Ю., Рахманова М.И. и др. // Журн. общ. химии. 2023. Т. 93. № 2. С. 266.
  19. Deswal Y., Asija S., Kumar D. et al. // Res. Chem. Intermed. 2022. V. 48. P. 703..
  20. Ivanov A.V., Shcherbakova V.S., Sobenina L.N. // Russ. Chem. Rev. 2023. V. 92. P. RCR5090.
  21. da Forezi L.S.M., Lima C.G.S., Amaral A.A.P. et al. // Chem. Record. 2021. V. 21. P. 2782.
  22. Mateev E., Georgieva M., Zlatkov A. // J. Pharm. Pharm. Sci. 2022. V. 25. P. 24.
  23. Moneo-Corcuera A., Pato-Doldan B., Sánchez-Molina I. et al. // Molecules. 2021. V. 26. P. 6020.
  24. Askew J.H., Shepherd H.J. // Dalton Trans. 2020. V. 49. P. 2966.
  25. Petrenko Y.P., Piasta K., Khomenko D.M. et al. // RSC Adv. 2021. V. 11. P. 23442.
  26. Gusev A., Kiskin M., Braga E. et al. // Dalton Trans. 2025. V. 54. P. 3335.
  27. Mahesh K., Karpagam S., Pandian K. // Top. Curr. Chem. 2019. V. 377. P. 12.
  28. Scattergood P.A., Sinopoli A., Elliott P.I.P. // Coord. Chem. Rev. 2017. V. 350. P. 136.
  29. Li A.-M., Hochdörffer T., Wolny J.A. et al. // Magnetochemistry. 2018. V. 4. P.34.
  30. Dong Y.-N., Xue J.-P., Yu M., Tao J. // Inorg. Chem. Commun. 2022. V. 140. P. 109475.
  31. Čechová D., Martišková A., Moncol J. // Acta Chim. Slovaca. 2014. V. 7. P. 15.
  32. TOPAS Software. Version 4.2. Karlsruhe: Bruker AXS. 2009.
  33. Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022. V. 12. P. e1606.
  34. Neese F., Wennmohs F., Becker U., Riplinger C. // JCP. 2020. V. 152. P. 224108.
  35. Adamo C., Barone V. // JCP. 1999. V. 110. P. 6158.
  36. Weigend F., Ahlrichs R. // PCCP. 2005. V. 7. P. 3297.
  37. Barone V., Cossi M. // J. Phys. Chem. A. 1998. V. 102. P. 1995.
  38. Cammi R., Mennucci B., Tomasi J. // J. Phys. Chem. A. 2000. V. 104. P. 5631.
  39. Hirata S., Head-Gordon M. // Chem. Phys. Lett. 1999. V. 314. P. 291.
  40. Burlov A.S., Vlasenko V.G., Koshchienko Yu.V. et al. // Polyhedron. 2018. V. 154. P. 65.
  41. SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc. 1997.
  42. Sheldrick G.M. SADABS. Madison (WI, USA): Bruker AXS Inc. 1997.
  43. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  44. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 3397.
  45. Lu X.-M., Li P.-Z., Wang X.-T. et al. // Polyhedron. 2008. V. 27. P. 3669.
  46. Majumder A., Westerhausen M., Kneifel A.N. et al. // Inorg. Chim. Acta. 2006. V. 359. P. 3841.
  47. Domide D., Hübner O., Behrens S. et al. // Eur. J. Inorg. Chem. 2011. V. 2011. P. 1387.
  48. Lubben M., Meetsma A., Feringa B. L. // Inorg. Chim. Acta. 1995. V. 230. P. 169.
  49. Wu J.-Z., Tanase S., Bouwman E. et al. // Inorg. Chim. Acta. 2003. V. 351. P. 278.
  50. Richards P.M., Quinn R.K., Morosin B. // J. Chem. Phys. 1973. V. 59. P. 4474.
  51. Yang E., Zhang J., Chen Y.-B. et al. // Acta Crystallogr. E. 2004. V. 60. Art. m390.
  52. Saha U., Dutta D., Bauzá A. et al. // Polyhedron. 2019. V. 159. P. 387.
  53. Yang Q., Nie J.-J., Xu D.-J. // Acta Crystallogr. E. 2008. V. 64. Art. m757.
  54. Boro M., Banik S., Gomila R.M. et al. // Inorganics. 2024. V. 12. P. 139.
  55. Dey R., Ghoshal D. // Polyhedron. 2012. V. 34. P. 24.
  56. Ракитин Ю.В., Калинников В.Т. Современная магнетохимия. СПб.: Наука, 1994. 276 c.
  57. Chilton N.F., Anderson R.P., Turner L.D. et al. // J. Comput. Chem. 2013. V. 34. P. 1164.
  58. Vos G., Haasnoot J.G., Verschoor G.C. et al. // Inorg. Chim. Acta. 1985. V. 105. P. 31.
  59. Meng H., Zhu W., Li F. et al. // Laser Photonics Rev. 2021. V. 15. P. 2100309.
  60. Tao P., Liu S.-J., Wong W.-Y. // Adv. Opt. Mater. 2020. V. 8. P. 2000985.
  61. Ciuba M.A., Levitus M. // ChemPhysChem. 2013. V. 14. P. 3495.
  62. Davydova M.P., Bauer I.A., Brel V.K. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. P. 695.
  63. Armaroli N., Cola L.D., Balzani V. et al. // Faraday Trans. 1992. V. 88. P. 553.
  64. Accorsi G., Listorti A., Yoosaf K., Armaroli N. // Chem. Soc. Rev. 2009. V. 38. P. 1690.
  65. de Souza Junior M.V., de Oliveira Neto J.G., Viana J. R. et al. // Vib. Spectrosc. 2024. V. 133. P. 103710.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Experimental (1) and calculated (2) diffraction patterns of the compound HРyrtrz.

Baixar (101KB)
3. Fig. 2. Experimental (1) and calculated (2) diffraction patterns of compound I.

Baixar (138KB)
4. Fig. 3. Experimental (1) and calculated (2) diffraction patterns of compound II.

Baixar (135KB)
5. Fig. 4. Experimental (1) and calculated (2) diffraction patterns of compound III.

Baixar (170KB)
6. Fig. 5. Comparison of IR spectra of compounds HРyrtrz, I, II and III.

Baixar (284KB)
7. Fig. 6. Comparison of IR spectra of Phen · H2O, HРyrtrz, the known complex [Mn(Phen)2Cl2] and compounds II, III.

Baixar (303KB)
8. Fig. 7. Fragment of the polymer chain of compound I (H atoms at C atoms are not shown). Symmetry codes: #1 0.5−x, 0.5+y, 0.5−z; #2 0.5−x, −0.5+y, 0.5−z; #3 x, 1+y, z; #4 x, −1+y, z.

Baixar (413KB)
9. Fig. 8. Fragment of the polymer chain of compound II (H atoms at C atoms are not shown). Symmetry codes: #1 2−x, 1− y, 1− z; #2 1− x, 1− y, 1− z; #3 1+ x, y, z; #4 −1+ x, y, z; #5 3− x, 1− y, 1− z.

Baixar (409KB)
10. Fig. 9. Molecular structure of complex III (H atoms at C atoms are not shown).

Baixar (148KB)
11. Fig. 10. Fragment of the crystal packing of complex III. The dotted lines show the C–H Cl and N–H Cl interactions.

Baixar (255KB)
12. Fig. 11. Temperature dependence of χT for I in a magnetic field of 5000 Oe in the temperature range of 2–300 K. The solid line is the approximation in the PHI program [58].

Baixar (83KB)
13. Fig. 12. Excitation (dashed lines) and luminescence (solid lines) spectra for HРyrtrz (1, 2), compound I (3, 4) and compound III (5, 6), respectively, in the crystalline phase at T = 300 K.

Baixar (199KB)
14. Fig. 13. Time dependences of the luminescence intensity of HРyrtrz, I and III under pulsed excitation at a wavelength of 376 nm (pulse length 56 ps) at T = 300 K.

Baixar (174KB)
15. Fig. 14. Color radiation diagram for HРyrtrz, I and III.

Baixar (249KB)
16. Fig. 15. EAS of solutions in DMSO (C = 0.33 × 10⁻⁴ mol/L, l = 1 cm) (1 and 2) and SD of polycrystalline samples (3 and 4) for HРyrtrz (1 and 3) and compound III (2 and 4).

Baixar (194KB)
17. Fig. 16. The systems under consideration: a dimer with putative π...π-interactions between [Mn(Phen)₂Cl₂] and HРyrtrz (a); a dimer with putative C−H...π-interactions between [Mn(Phen)₂Cl₂] and HРyrtrz (b).

Baixar (119KB)
18. Fig. 17. The most intense transition dipole moments for the systems under consideration: a) a dimer with putative π...π interactions between [Mn(Phen)₂Cl₂] and HРyrtrz; b) a dimer with putative C–H...π interactions between [Mn(Phen)₂Cl₂] and HРyrtrz. The optical excitation spectrum of compound III is shown in blue, the vertical blue bands correspond to the transition dipole moments, their heights correspond to the calculated oscillator strengths. For the transition dipole moments discussed in the text, the bands are continued by a dotted line.

Baixar (182KB)
19. Fig. 18. Molecular orbitals corresponding to excitations at 301 nm (a), 409 nm (b), 431 nm (c), 464 nm (d).

Baixar (810KB)

Declaração de direitos autorais © Российская академия наук, 2025