Effect of Synthesis and Crystallization Conditions on the Composition and Structure of Europium(III) Mixed-Carboxylate Benzoate–Pentafluorobenzoate Complexes
- 作者: Shmelev M.A.1, Lebedev D.S.2, Chistyakov A.S.1, Voronina J.K.1, Efromeev L.M.1,2, Rogachev A.V.3, Sidorov A.A.1, Eremenkoa I.L.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Faculty of Chemistry, HSE University
- MIREA — Russian technological university
- 期: 卷 51, 编号 7 (2025)
- 页面: 423-437
- 栏目: Articles
- URL: https://pediatria.orscience.ru/0132-344X/article/view/688154
- DOI: https://doi.org/10.31857/S0132344X25070012
- EDN: https://elibrary.ru/KPJSDU
- ID: 688154
如何引用文章
详细
In the present work, the influence of the nature of the solvate molecules and N-donor ligands on the structures of the benzoate–pentafluorobenzoate europium complexes was investigated. It was established that the reaction of europium benzoate (bz) and pentafluorobenzoate (pfb) with 1,10-phenanthroline (phen) in acetonitrile in the presence of toluene, o-xylene, or dichloromethane leads to the formation of compounds [Eu2(phen)2(pfb)4(bz)2]·4C6H5CH3 (I), [Eu2(phen)2(pfb)4(bz)2]·4C6H4(CH3)2 (II), and [Eu2(phen)2(pfb)4 (bz)2]·2.898CH2Cl2 (III), respectively, which possess similar structures. Using quinoline (quin) as the N-donor ligand, mixed-carboxylate coordination polymer crystals [Eu(H₂O)(pfb)2(bz)]n·2n(quin) (IV) were obtained in good yield. The synthesized compounds were characterized by single-crystal X-ray diffraction, IR spectroscopy, and CHN elemental analysis. Non-covalent interactions were analyzed by Hirshfeld surface analysis.
全文:

作者简介
M. Shmelev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: shmelevma@yandex.ru
俄罗斯联邦, Moscow
D. Lebedev
Faculty of Chemistry, HSE University
Email: shmelevma@yandex.ru
俄罗斯联邦, Moscow
A. Chistyakov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: shmelevma@yandex.ru
俄罗斯联邦, Moscow
J. Voronina
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: shmelevma@yandex.ru
俄罗斯联邦, Moscow
L. Efromeev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Faculty of Chemistry, HSE University
Email: shmelevma@yandex.ru
俄罗斯联邦, Moscow; Moscow
A. Rogachev
MIREA — Russian technological university
Email: shmelevma@yandex.ru
俄罗斯联邦, Moscow
A. Sidorov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: shmelevma@yandex.ru
俄罗斯联邦, Moscow
I. Eremenkoa
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: shmelevma@yandex.ru
俄罗斯联邦, Moscow
参考
- Singh P., Kachhap S., Singh P., Singh S.K. // Coord Chem Rev. 2022. V. 472. № 214795.
- Marin R., Jaque D. // Chem. Rev. 2021. V. 121. № 3. P. 1425.
- Singh A.K. // Coord Chem Rev. 2022. V. 455. № 214365.
- Chen C., Li C., Shi Z. // Adv. Sci. 2016. V. 3. № 10. № 1600029.
- Crawford S.E., Ohodnicki P.R., Baltrus J.P. // J. Mater. Chem. C. 2020. V. 8. P. 7975.
- Shmelev M.A., Polunin R.A., Gogoleva N.V. et al. // Molecules. 2021. V. 26. № 14. Р. 4296.
- Peng X.X., Wang M.X., Zhang J.L. // Coord Chem Rev. 2024. V. 519. P. 216096.
- Paderni D., Giorgi L., Fus V. et al. // Coord Chem Rev. 2021. V. 429. P. 213639.
- Li S., Zhou L., Zhang H.// Light Sci Appl. 2022. V. 11. P. 177.
- Barkanov A., Zakharova A., Vlasova T. et al. // J. Mater. Sci. 2022. V. 57. P. 8393.
- Ferdiana N.A., Bahti H.H., Kurnia D., Wyantuti S. // Sens. Bio-Sens. Res. 2023. V. 41. P. 100573.
- Shmelev M.A., Kuznetsova G.N., Gogoleva N.V. et al. // Russ. Chem. Bull. 2021. V. 70. P. 830.
- Lima N.B.D., Silva A.I.S., Gonçalves S.M.C., Simas A.M. // J. Lumin. 2016. V. 170. P. 505.
- Melo L.L.L.S., Castro Jr. G.P., Gonçalves S.M.C. // RSC Adv. 2017. V. 7. № 34. P. 20811.
- Melo L.L.L.S., Castro G.P., Gonçalves S.M.C. // Inorg. Chem. 2019. V. 58. № 5. P. 3265.
- Gogoleva N.V., Shmelev M.A., Chistyakov A.S. // Mendeleev Commun. 2024. V. 34. № 4. P. 484.
- Shmelev M. A., Gogoleva N. V., Ivanov V. K. et al. // Russ. J. Coord. Chem. 2022. V. 48. P. 539. https://doi.org/10.1134/S1070328422090056
- Puntus L., Lyssenko K. // J. Rare Earths. 2008. V. 26. № 2. P. 146.
- Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. P. 213094.
- Silva A.I.S., Santos V.F.C., Lima N.B.D. et al. // RSC Adv. 2016. V. 6. P. 90934.
- Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. № 11. P. 194.
- Voronina J.K., Yambulatov D.S., Chistyakov A.S. et al. // Crystals. 2023. V. 13. № 4. Р. 678.
- Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. P. 224. https://doi.org/10.1134/S1070328422040042
- Zhang S., Chen A., An Y., Li Q. // Matter. 2024. V. 7. № 10. P. 3317.
- Wang L., Deng J., Jiang M. et al // J. Mater. Chem. A. 2023. V. 11. P. 11235.
- Shmelev M.A., Kiskin M.A., Voronina J.K. et al. // Materials. 2020. V. 13. № 24. Р. 5689.
- Larionov S.V., Glinskaya L.A., Leonova T.G. et al. // Russ. J. Coord. Chem. 2009. V. 35. P. 798. https://doi.org/10.1134/S1070328409110025
- Khiyalov M.S., Amiraslanov I.R., Musaev F.N., Mamedov Kh.S. // Sov. J. Coord. Chem. 1982. V. 8. P. 548.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
- Casanova D., Llunell M., Alemany P., Alvarez S. et al. // Chem. Eur. J. 2005. V. 11. P. 1479.
- Thomas S.P., Spackman P.R., Jayatilaka D., Spackman M.A. // J. Chem. Theor. Comput. 2018. V. 14. P. 1614.
- Shmelev M.A., Levina A.A., Chistyakov A.S. et al. // Mendeleev Commun. 2025. V. 35. № 1. P. 35.
- Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. Chem. Bull. 2020. V. 69. № 8. P. 1544.
- Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // ChemistrySelect. 2020. V. 5. № 28. P. 8475.
补充文件
