Brain insulin: delivery routes, mechanisms of action, and application of intranasal insulin for the treatment of diabetes mellitus and metabolic syndrome
- Авторлар: Shpakov A.O.1, Derkach K.V.1
-
Мекемелер:
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
- Шығарылым: Том 56, № 3 (2025)
- Беттер: 3-23
- Бөлім: Articles
- URL: https://pediatria.orscience.ru/0301-1798/article/view/693394
- DOI: https://doi.org/10.7868/S3034611825030013
- ID: 693394
Дәйексөз келтіру
Аннотация
Insulin is traditionally considered a hormone of pancreatic origin that regulates glucose homeostasis and a wide range of metabolic and hormonal processes at the periphery. However, in recent decades, convincing evidence has been obtained that insulin also controls many processes in the brain, performing the functions of a neurotrophic factor, neuromodulator and neuroprotector, and some areas of the brain are capable of synthesizing insulin de novo. Insulin implements its effects in the central nervous system through the insulin signaling system, which in its structural and functional organization and regulatory mechanisms has significant similarities with that in the periphery. Since the total pool of insulin in the CNS consists of insulin produced by β-cells and entering the brain through the blood-brain barrier (BBB) and the hormone synthesized by brain structures, a decrease in its production or weakening of its transport through the BBB lead to insulin deficiency in the brain and disruption of its signaling. Other causes of weakened insulin signaling in the brain include central insulin resistance, neuroinflammation caused by increased activity of proinflammatory factors, the development of reactive astrogliosis and activation of microglia, as well as increased activity of enzymes that cause insulin degradation. One of the promising approaches for effective restoration of insulin signaling in the CNS is the use of intranasally administered insulin (IAI), which enters the brain directly through axonal pathways. Currently, IAI is used in the clinic to treat patients with Alzheimer's disease and cognitive deficit associated with type 2 diabetes mellitus (T2DM). However, the therapeutic potential of IAI is not limited to this. We have shown that IAI is effective in correcting metabolic and hormonal disorders associated with T1DM, T2DM, metabolic syndrome and obesity, and a number of its restorative effects are enhanced by the combined use of IAI with metformin, proinsulin C-peptide, and gangliosides, administered both systemically and intranasally. This indicates that the targets of IAI in diabetic pathology and obesity are not only brain structures, but also peripheral organs and tissues, including components of the gonadal and thyroid systems. This review is devoted to the problem of insulin signaling in the brain, its disorders in various pathologies, as well as the use of IAI to restore the activity of the brain's insulin system, including for the purpose of normalizing neurocognitive, metabolic and hormonal indicators in diabetic pathology.
Авторлар туралы
A. Shpakov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: alex_shpakov@list.ru
St. Petersburg, 194223 Russia
K. Derkach
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: derkatch_k@list.ru
St. Petersburg, 194223 Russia
Әдебиет тізімі
- Деркач К.В., Бондарева В.М., Басова Н.Е. и др. Совместное применение метформина и интраназального инсулина нормализует чувствительность к глюкозе и гормональный статус у крыс с диабетом 2 типа // Интегр. физиол. 2021. Т. 2. № 4. С. 399–411. https://doi.org/10.33910/2687-1270-2021-2-4-399-411
- Деркач К.В., Иванцов А.О., Басова Н.Е., Шпаков А.О. Эффективность комбинации метформина и интраназального инсулина для коррекции метаболических и гормональных нарушений у взрослых самцов крыс с метаболическим синдромом, вызванным нарушением грудного вскармливания // Обз. клин. фарм. лек. тер. 2024. T. 22. № 3. C. 289–300. https://doi.org/10.17816/RCF626249
- Шпаков А.О., Деркач К.В. Способ коррекции комплекса метаболических и гормональных показателей при сахарном диабете 2-го типа с помощью интраназально вводимого инсулина // Патент на изобретение RU 2827354 C1. Дата регистрации 24.09.2024 г. https://www.elibrary.ru/item.asp?id=73238409
- Шпаков А.О., Деркач К.В. Способ совместного применения интраназально вводимого инсулина и перорально вводимого метформина для восстановления метаболических и гормональных показателей при сахарном диабете 2 типа и метаболическом синдроме // Патент на изобретение RU 2824275 C1. Дата регистрации 07.08.2024 г. https://www.elibrary.ru/item.asp?id=68603445
- Accardi G., Virruso C., Balistreri C.R. et al. SHIP2: A “new” insulin pathway target for aging research // Rejuvenation Res. 2014. V. 17. P. 221–225. https://doi.org/10.1089/rej.2013.1541
- Aguirre V., Werner E.D., Giraud J. et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action // J. Biol. Chem. 2002. V. 277. P. 1531–1537. https://doi.org/ 10.1074/jbc.M101521200
- Arnold S.E., Arvanitakis Z., Macauley-Ram- bach S.L. et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums // Nat. Rev. Neurol. 2018. V. 14. № 3. P. 168–181. https://doi.org/10.1038/nrneurol.2017.185
- Banks W.A., Dohgu S., Lynch J.L. et al. Nitric oxide isoenzymes regulate lipopolysaccharide-enhanced insulin transport across the blood-brain barrier // Endocrinology. 2008. V. 149. P. 1514–1523. https://doi.org/10.1210/en.2007-1091
- Banting F.G., Best C.H. The Internal Sec-retion of the Pancreas // J. Lab. Clin. Med. 1922. V. 7. P. 42–60. https://doi.org/10.3138/9781442656918-008
- Bassil F., Delamarre A., Canron M.H. et al. Impaired brain insulin signalling in Parkinson's disease // Neuropathol. Appl. Neurobiol. 2022. V. 48. № 1. P. e12760. https://doi.org/10.1111/nan.12760
- Baura G.D., Foster D.M., Porte D. et al. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain // J. Clin. Invest. 1993. V. 92. № 4. P. 1824–1830. https://doi.org/10.1172/JCI116773
- Beddows C.A., Dodd G.T. Insulin on the brain: The role of central insulin signalling in energy and glucose homeostasis // J. Neuroendocrinol. 2021. V. 33. P. e12947. https://doi.org/10.1111/jne.12947
- Benedict C., Kern W., Schultes B. et al. Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin // J. Clin. Endocrinol. Metab. 2008. V. 93. № 4. P. 1339–1344. https://doi.org/10.1210/jc.2007-2606
- Blázquez E., Hurtado-Carneiro V., LeBaut-Ayuso Y. et al. Significance of Brain Glucose Hypometabolism, Altered Insulin Signal Transduction, and Insulin Resistance in Several Neurological Diseases // Front. Endocrinol. (Lausanne). 2022. V. 13. P. 873301. https://doi.org/10.3389/fendo.2022.873301
- Blázquez E., Velázquez E., Hurtado-Carneiro V., Ruiz-Albusac J.M. Insulin in the brain: Its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease // Front. Endocrinol. 2014. V. 5. P. 161. https://doi.org/10.3389/fendo.2014.00161
- Born J., Lange T., Kern W. et al. Sniffing neuropeptides: A transnasal approach to the human brain // Nat. Neurosci. 2002. V. 5. № 6. P. 514–516. https://doi.org/10.1038/nn849
- Bradbery A.N., Coverdale J.A., Hammer C.J. et al. Effect of maternal overnutrition on predisposition to insulin resistance in the foal: Foal skeletal muscle development and insulin signaling // Domest. Anim. Endocrinol. 2021. V. 77. P. 106648. https://doi.org/10.1016/j.domaniend.2021.106648
- Busquets O., Espinosa-Jiménez T., Ettcheto M. et al. JNK1 and JNK3: Divergent functions in hippocampal metabolic-cognitive function // Mol. Med. 2022. V. 28. P. 48. https://doi.org/10.1186/s10020-022-00471-y
- Chen W., Cai W., Hoover B., Kahn C.R. Insulin action in the brain: Cell types, circuits, and diseases // Trends. Neurosci. 2022. V. 45. № 5. P. 384–400. https://doi.org/10.1016/j.tins.2022.03.001
- Chistyakova O.V., Bondareva V.M., Shipilov V.N. et al. Intranasal administration of insulin eliminates the deficit of long-term spatial memory in rats with neonatal diabetes mellitus // Dokl. Biochem. Biophys. 2011. V. 440. P. 216–218. https://doi.org/10.1134/S1607672911050048
- Copps K.D., White M.F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2 // Diabetologia. 2012. V. 55. P. 2565–2582. https://doi.org/10.1007/s00125-012-2644-8
- Dakic T., Jevdjovic T., Lakic I. et al. The Expression of Insulin in the Central Nervous System: What Have We Learned So Far? // Int. J. Mol. Sci. 2023. V. 24. P. 6586. https://doi.org/10.3390/ijms24076586
- De la Monte S.M. The Full Spectrum of Alzheimer's Disease Is Rooted in Metabolic Derangements That Drive Type 3 Diabetes // Adv. Exp. Med. Biol. 2019. V. 1128. P. 45–83. https://doi.org/10.1007/978-981-13-3540-2_4
- Deltour L., Leduque P., Blume N. et al. Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo // Proc. Natl. Acad. Sci. U S A. 1993. V. 90. № 2. P. 527–531. https://doi.org/10.1073/pnas.90.2.527
- Derkach K.V., Bakhtyukov A.A., Basova N.E. et al. The Restorative Effect of Combined Insulin and C-Peptide Intranasal Administration on Hormonal Status and Hypothalamic Signaling in the Male Rat Model of Severe Short-term Streptozotocin-Induced Diabetes // J. Evol. Biochem. Physiol. 2022. V. 58. № 3. P. 677–691. https://doi.org/10.1134/S002209302203005X
- Derkach K.V., Bogush I.V., Berstein L.M., Shpa- kov A.O. The influence of intranasal insulin on hypothalamic-pituitary-thyroid axis in normal and diabetic rats // Horm. Metab. Res. 2015. V. 47. № 12. P. 916–924. https://doi.org/10.1055/s-0035-1547236
- Derkach K.V., Bondareva V.M., Perminova A.A., Shpakov A.O. C-peptide and insulin during combined intranasal administration improve the metabolic parameters and activity of the adenylate cyclase system in the hypothalamus, myocardium, and epididymal fat of rats with type 2 diabetes // Cell Tissue Biol. 2019. V. 13. № 3. P. 228–236. https://doi.org/10.1134/S1990519X19030039
- Derkach K.V., Bondareva V.M., Shpakov A.O. Regulatory effects of intranasal C-peptide and insulin on thyroid and androgenic status of male rats with moderate type 1 diabetes mellitus // J. Evol. Biochem. Physiol. 2019. V. 55. № 6. P. 493–496. https://doi.org/10.1134/S0022093019060073
- Derkach K.V., Gureev M.A., Babushkina A.A. et al. Dual PTP1B/TC-PTP Inhibitors: Biological Evaluation of 3-(Hydroxymethyl)cinnoline-4(1H)-Ones // Int. J. Mol. Sci. 2023. V. 24. P. 4498. https://doi.org/10.3390/ijms24054498
- Derkach K.V., Ivantsov A.O., Chistyakova O.V. et al. Intranasal insulin restores metabolic parameters and insulin sensitivity in rats with metabolic syndrome // Bull. Exp. Biol. Med. 2017. V. 163. № 2. P. 184–189. https://doi.org/10.1007/s10517-017-3762-6
- Derkach K.V., Perminova A.A., Buzanakov D.M., Shpakov A.O. Intranasal administration of proinsulin C-peptide enhances the stimulating effect of insulin on insulin system activity in the hypothalamus of diabetic rats // Bull. Exp. Biol. Med. 2019. V. 167. № 3. P. 351–355. https://doi.org/10.1007/s10517-019-04525-w
- Derkach K.V., Zakharova I.O., Bakhtyukov A.A. et al. Kharakteristika i biologicheskaia aktivnost' novykh ingibitorov tirozinfosfataz PTP1B i TCPTP na osnove 4-okso-1,4-digidrotsinnolina [Characterization and biological activity of new 4-oxo-1,4-dihydrocinnoline-based inhibitors of the tyrosine phosphatase PTP1B and TCPTP]. Biomed. Khim. 2022. V. 68. № 6. P. 427–436. Russian. https://doi.org/10.18097/PBMC20226806427
- Derkach K., Zakharova I., Zorina I. et al. The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect // PLoS One. 2019. V. 14. № 3. P. e0213779. https://doi.org/10.1371/journal.pone.0213779
- Derkach K.V., Zorina I.I., Shpakov A.O. Efficacy of Metformin Course Application Combined with Intranasal Insulin in Treating Rats with Cafeteria Diet-Induced Obesity // J. Evol. Biochem. Physiol. 2024. V. 60. № 2. P. 852–863. https://doi.org/10.1134/S0022093024020327
- Derkach K.V., Zorina I.I., Zakharova I.O. et al. The Influence of Intranasally Administered Insulin and C-peptide on AMP-Activated Protein Kinase Activity, Mitochondrial Dynamics and Apoptosis Markers in the Hypothalamus of Rats with Streptozotocin-Induced Diabetes // J. Evol. Biochem. Physiol. 2020. V. 56. № 3. P. 207–217. https://doi.org/10.1134/S0022093020030035
- Devaskar S.U., Sadiq H.F., Holtzclaw L., Geor-ge M. The developmental pattern of rabbit brain insulin and insulin-like growth factor receptor expression // Brain. Res. 1993. V. 605. P. 101–109. https://doi.org/10.1016/0006-8993(93)91361-u
- Du S., Zheng H. Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative diseases // Cell Biosci. 2021. V. 11. P. 188. https://doi.org/10.1186/s13578-021-00700-7
- Duda P., Wiśniewski J., Wójtowicz T. et al. Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging // Expert. Opin. Ther. Targets. 2018. V. 22. P. 833–848. https://doi.org/10.1080/14728222.2018.1526925
- Dutta B.J., Singh S., Seksaria S. et al. Inside the diabetic brain: Insulin resistance and molecular mechanism associated with cognitive impairment and its possible therapeutic strategies // Pharmacol. Res. 2022. V. 182. P. 106358. https://doi.org/10.1016/j.phrs.2022.106358
- Estrada J.A., Hori A., Fukazawa A. et al. Abnormal cardiovascular control during exercise: Role of insulin resistance in the brain // Auton. Neurosci. 2025. V. 258. P. 103239. https://doi.org/10.1016/j.autneu.2025.103239
- Fan L.W., Carter K., Bhatt A., Pang Y. Rapid transport of insulin to the brain following intranasal administration in rats // Neural. Regen. Res. 2019. V. 14. № 6. P. 1046–1051. https://doi.org/10.4103/1673-5374.250624
- Galindo-Mendez B., Trevino J.A., McGlin- chey R. et al. Memory advancement by intranasal insulin in type 2 diabetes (MemAID) randomized controlled clinical trial: Design, methods and rationale // Contemp. Clin. Trials. 2020. V. 89. P. 105934. https://doi.org/10.1016/j.cct.2020.105934
- Gerozissis K. Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies // Eur. J. Pharmacol. 2008. V. 585. № 1. P. 38–49. https://doi.org/10.1016/j.ejphar.2008.01.050
- Ghasemi R., Haeri A., Dargahi L. et al. Insulin in the brain: Sources, localization and functions // Mol. Neurobiol. 2013. V. 47. P. 145–171. https://doi.org/10.1007/s12035-012-8339-9
- Gómez-Guijarro M.D., Cavero-Redondo I., Saz-Lara A. et al. Intranasal insulin effect on cognitive and/or memory impairment: A systematic review and meta-analysis // Cogn. Neurodyn. 2024. V. 18. № 5. P. 3059–3073. https://doi.org/10.1007/s11571-024-10138-5
- González A., Calfío C., Churruca M., Maccio- ni R.B. Glucose metabolism and AD: Evidence for a potential diabetes type 3 // Alzheimers Res. Ther. 2022. V. 14. P. 56. https://doi.org/10.1186/s13195-022-00996-8
- Gwizdala K.L., Ferguson D.P., Kovan J. et al. Placebo controlled phase II clinical trial: Safety and efficacy of combining intranasal insulin & acute exercise // Metab. Brain Dis. 2021. V. 36. № 6. P. 1289–1303. https://doi.org/10.1007/s11011-021-00727-2
- Hallschmid M. Intranasal insulin // J. Neuroendocrinol. 2021. V. 33. № 4. P. e12934. https://doi.org/10.1111/jne.12934
- Ham S., Kim S.S., Park S. et al. Combinatorial transcriptomic and genetic dissection of insulin/IGF-1 signaling-regulated longevity in Caenorhabditis elegans // Aging Cell. 2024. V. 23. P. e14151. https://doi.org/10.1111/acel.14151
- Havrankova J., Roth J., Brownstein M.J. Concentrations of insulin and insulin receptors in the brain are independent of peripheral insulin levels. Studies of obese and streptozotocin-treated rodents // J. Clin. Invest. 1979. V. 64. № 2. P. 636–642. https://doi.org/10.1172/JCI109504
- Havrankova J., Schmechel D., Roth J., Brown- stein M. Identification of insulin in rat brain // Proc. Natl. Acad. Sci. U S A. 1978. V. 75. № 11. P. 5737–5741. https://doi.org/10.1073/pnas.75.11.5737
- Hemmings B.A., Restuccia D.F. PI3K-PKB/Akt pathway // Cold Spring Harb. Perspect. Biol. 2012. V. 4. P. a011189. https://doi.org/10.1101/cshperspect.a011189
- Heni M. The insulin resistant brain: impact on whole-body metabolism and body fat distribution // Diabetologia. 2024. V. 67. № 7. P. 1181–1191. https://doi.org/10.1007/s00125-024-06104-9
- Heni M., Kullmann S., Preissl H. et al. Impaired insulin action in the human brain: Causes and metabolic consequences // Nat. Rev. Endocrinol. 2015. V. 11. № 12. P. 701–711. https://doi.org/10.1038/nrendo.2015.173
- Heni M., Wagner R., Kullmann S. et al. Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men // Diabetes. 2014. V. 63. P. 4083–4088. https://doi.org/10.2337/db14-0477
- Hou Y., Chen Z., Cheng J. et al. The Mechanism and Treatment of Cognitive Dysfunction in Diabetes: A Review // Exp. Clin. Endocrinol. Diabetes. 2025. V. 133. № 2. P. 64–72. https://doi.org/10.1055/a-2480-7826
- Hu S.H., Jang T., Yang S.S., Yang Y. Pioglitazone ameliorates intracerebral insulin resistance and tau-protein hyperphosphorylation in rats with type 2 diabetes // Exp. Clin. Endocrinol. Diabetes. 2013. V. 121. P. 220–224. https://doi.org/10.1055/s-0032-1333277
- Husain K.H., Sarhan S.F., AlKhalifa H.K.A.A. et al. Dementia in Diabetes: The Role of Hypoglycemia // Int. J. Mol. Sci. 2023. V. 24. P. 9846. https://doi.org/10.3390/ijms24129846
- Ivanov V.V., Buyko E.E., Ufandeev A.A. et al. Insulin Resistance in Experimental Type 1 Diabetes Mellitus // Bull. Exp. Biol. Med. 2022. V. 172. № 6. P. 691–694. https://doi.org/10.1007/s10517-022-05458-7
- Javadpour P., Dargahi L., Ahmadiani A., Ghase-mi R. To be or not to be: PP2A as a dual player in CNS functions, its role in neurodegeneration, and its interaction with brain insulin signaling // Cell. Mol. Life Sci. 2019. V. 76. P. 2277–2297. https://doi.org/10.1007/s00018-019-03063-y
- Kaplan L., Chow B.W., Gu C. Neuronal regulation of the blood-brain barrier and neurovascular coupling // Nat. Rev. Neurosci. 2020. V. 21. № 8. P. 416–432. https://doi.org/10.1038/s41583-020-0322-2
- Khan M.Z., Zugaza J.L., Torres Aleman I. The signaling landscape of insulin-like growth fac- tor 1 // J. Biol. Chem. 2025. V. 301. № 1. P. 108047. https://doi.org/10.1016/j.jbc.2024.108047
- Konishi M., Sakaguchi M., Lockhart S.M. et al. Endothelial insulin receptors differentially control insulin signaling kinetics in peripheral tissues and brain of mice // Proc. Natl. Acad. Sci. USA. 2017. V. 114. P. E8478–E8487. https://doi.org/10.1073/pnas.1710625114
- Kopp K.O., Glotfelty E.J., Li Y., Greig N.H. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment // Pharmacol. Res. 2022. V. 186. P. 106550. https://doi.org/10.1016/j.phrs.2022.106550
- Kullmann S., Fritsche A., Wagner R. et al. Hypothalamic insulin responsiveness is associated with pancreatic insulin secretion in humans // Physiol. Behav. 2017. V. 176. P. 134–138. https://doi.org/10.1016/j.physbeh.2017.03.036
- Kullmann S., Heni M., Veit R. et al. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults // Diabetes Care. 2015. V. 38. № 6. P. 1044–1050. https://doi.org/10.2337/dc14-2319
- Kullmann S., Veit R., Peter A. et al. Dose-Dependent Effects of Intranasal Insulin on Resting-State Brain Activity // J. Clin. Endocrinol. Metab. 2018. V. 103. № 1. P. 253–262. https://doi.org/10.1210/jc.2017-01976
- Landreh M., Jörnvall H. Biological activity versus physiological function of proinsulin C-peptide // Cell. Mol. Life Sci. 2021. V. 78. № 3. P. 1131–1138. https://doi.org/10.1007/s00018-020-03636-2
- Langlet F., Levin B.E., Luquet S. et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting // Cell. Metab. 2013. V. 17. P. 607–617. https://doi.org/10.1016/j.cmet.2013.03.004
- Lemche E., Hortobágyi T., Kiecker C., Turkhei- mer F. Neuropathological links between T2DM and LOAD: systematic review and meta-analysis // Physiol. Rev. 2025. V. 105. № 3. P. 1429–1486. https://doi.org/10.1152/physrev.00040.2024
- Levenga J., Wong H., Milstead R.A. et al. AKT isoforms have distinct hippocampal expression and roles in synaptic plasticity // eLife. 2017. V. 6. P. e30640. https://doi.org/10.7554/eLife.30640
- Lindfors L., Sundström L., Fröderberg Roth L. et al. Is GPR146 really the receptor for proinsulin C-peptide? // Bioorg. Med. Chem. Lett. 2020. V. 30. № 13. P. 127208. https://doi.org/10.1016/j.bmcl.2020.127208
- Lochhead J.J., Kellohen K.L., Ronaldson P.T., Davis T.P. Distribution of insulin in trigeminal nerve and brain after intranasal administration // Sci Rep. 2019. V. 9. № 1. P. 2621. https://doi.org/10.1038/s41598-019-39191-5
- Luo D., Ni X., Yang H. et al. A comprehensive review of advanced nasal delivery: Specially insulin and calcitonin // Eur. J. Pharm. Sci. 2024. V. 192. P. 106630. https://doi.org/10.1016/j.ejps.2023.106630
- Ma M., Jing G., Tian Y. et al. Ferroptosis in Cognitive Impairment Associated with Diabetes and Alzheimer's Disease: Mechanistic Insights and New Therapeutic Opportunities // Mol. Neurobiol. 2025. V. 62. № 2. P. 2435–2449. https://doi.org/10.1007/s12035-024-04417-9
- Mäe M.A., He L., Nordling S. et al. Single-Cell Analysis of Blood-Brain Barrier Response to Pericyte Loss // Circ. Res. 2021. V. 128. P. e46–e62. https://doi.org/10.1161/CIRCRESAHA.120.317473
- Maher M.A., Kandeel W.A., Hammam O.A. et al. Histopathological evaluation of insulin-DMSO formula designed for direct nose-to-brain delivery // Histol. Histopathol. 2022. V. 37. P. 431–439. https://doi.org/10.14670/HH-18-421
- Martínez Báez A., Ayala G., Pedroza-Saavedra A. et al. Phosphorylation Codes in IRS-1 and IRS-2 Are Associated with the Activation/Inhibition of Insulin Canonical Signaling Pathways // Curr. Issues Mol. Biol. 2024. V. 46. P. 634–649. https://doi.org/10.3390/cimb46010041
- Mayhan W.G., Scott J.P., Arrick D.M. Influence of type 1 diabetes on basal and agonist-induced permeability of the blood-brain barrier // Physiol. Rep. 2015. V. 3. № 12. P. e12653. https://doi.org/10.14814/phy2.12653
- McCubrey J.A., Steelman L.S., Bertrand F.E. et al. GSK-3 as potential target for therapeutic intervention in cancer // Oncotarget. 2014. V. 5. P. 2881–2911. https://doi.org/10.18632/oncotarget.2037
- McKinley M.J., Denton D.A., Ryan P.J. et al. From sensory circumventricular organs to cerebral cortex: Neural pathways controlling thirst and hunger // J. Neuroendocrinol. 2019. V. 31. P. e12689. https://doi.org/10.1111/jne.12689
- Meng X., Zhang H., Zhao Z. et al. Type 3 diabetes and metabolic reprogramming of brain neurons: Causes and therapeutic strategies // Mol. Med. 2025. V. 31. № 1. P. 61. https://doi.org/10.1186/s10020-025-01101-z
- Moller D.E., Yokota A., Caro J.F., Flier J.S. Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in man // Mol. Endocrinol. 1989. V. 3. P. 1263–1269. https://doi.org/10.1210/mend-3-8-1263.
- Morales-Corraliza J., Wong H., Mazzella M.J. et al. Brain-Wide Insulin Resistance, Tau Phosphorylation Changes, and Hippocampal Neprilysin and Amyloid-β Alterations in a Monkey Model of Type 1 Diabetes // J. Neurosci. 2016. V. 36. P. 4248–4258. https://doi.org/10.1523/JNEUROSCI.4640-14.2016
- Mosthaf L., Grako K., Dull T.J. et al. Functionally distinct insulin receptors generated by tissue-specific alternative splicing // EMBO J. 1990. V. 9. P. 2409–2413. https://doi.org/10.1002/j.1460-2075.1990.tb07416.x
- Murthy M.H.S., Jasbi P., Lowe W. et al. Insulin signaling and pharmacology in humans and in corals // PeerJ. 2024. V. 12. P. e16804. https://doi.org/10.7717/peerj.16804
- Nguyen V., Thomas P., Pemberton S. et al. Central nervous system insulin signaling can influence the rate of insulin influx into brain // Fluids Barriers CNS. 2023. V. 20. № 1. P. 28. https://doi.org/10.1186/s12987-023-00431-6
- Nijssen K.M.R., Mensink R.P., Joris P.J. Effects of Intranasal Insulin Administration on Cerebral Blood Flow and Cognitive Performance in Adults: A Systematic Review of Randomized, Placebo-Controlled Intervention Studies // Neuroendocrinology. 2023. V. 113. P. 1–13. https://doi.org/10.1159/000526717
- Novak V., Mantzoros C.S., Novak P. et al. Memory advancement with intranasal insulin vs. placebo in type 2 diabetes and control participants: Arandomized clinical trial // J. Neurol. 2022. V. 269. № 9. P. 4817–4835. https://doi.org/10.1007/s00415-022-11119-6
- Novak V., Milberg W., Hao Y. et al. Enhancement of vasoreactivity and cognition by intranasal insulin in type 2 diabetes // Diabetes Care. 2014. V. 37. № 3. P. 751–759. https://doi.org/10.2337/dc13-1672
- Nowell J., Blunt E., Edison P. Incretin and insulin signaling as novel therapeutic targets for Alzheimer's and Parkinson's disease // Mol. Psychiatry. 2023. V. 28. P. 217–229. https://doi.org/10.1038/s41380-022-01792-4
- Ohtsuki S. Insulin receptor at the blood-brain barrier: Transport and signaling // Vitam. Horm. 2024. V. 126. P. 113–124. https://doi.org/10.1016/bs.vh.2024.05.001
- Ono H. Molecular Mechanisms of Hypothalamic Insulin Resistance // Int. J. Mol. Sci. 2019. V. 20. P. 1317. https://doi.org/10.3390/ijms20061317
- Ott V., Benedict C., Schultes B. et al. Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism // Diabetes Obes. Metab. 2012. V. 14. № 3. P. 214–221. https://doi.org/10.1111/j.1463-1326.2011.01490.x
- Pertseva M.N., Shpakov A.O. Konservativnost' insulinovoĭ signal'noĭ sistemy v évoliutsii bespozvonochnykh i pozvonochnykh zhivotnykh [Conservatism of the insulin signal system in the evolution of vertebrate and invertebrate animals] // Zh. Evol. Biokhim. Fiziol. 2002. V. 38. № 5. P. 430–441.
- Pickering J., Wong R., Al-Salami H. et al. Cognitive Deficits in Type-1 Diabetes: Aspects of Glucose, Cerebrovascular and Amyloid Involvement // Pharm. Res. 2021. V. 38. P. 1477–1484. https://doi.org/10.1007/s11095-021-03100-1
- Picone P., Sabatino M.A., Ditta L.A. et al. Nose-to-brain delivery of insulin enhanced by a nanogel carrier // J. Control Release. 2018. V. 270. P. 23–36. https://doi.org/10.1016/j.jconrel.2017.11.040
- Popescu R., Dinu-Pîrvu C.E., Ghica M.V. et al. Physico-Chemical Characterization and Initial Evaluation of Carboxymethyl Chitosan-Hyaluronan Hydrocolloid Systems with Insulin Intended for Intranasal Administration // Int. J. Mol. Sci. 2024. V. 25. № 19. P. 10452. https://doi.org/10.3390/ijms251910452
- Porniece Kumar M., Cremer A.L., Klemm P. et al. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity // Nat. Metab. 2021. V. 3. P. 1662–1679. https://doi.org/10.1038/s42255-021-00499-0
- Razzini G., Ingrosso A., Brancaccio A. et al. Different subcellular localization and phosphoinositides binding of insulin receptor substrate protein pleckstrin homology domains // Mol. Endocrinol. 2000. V. 14. P. 823–836. https://doi.org/10.1210/mend.14.6.0486
- Reger M.A., Watson G.S., Frey W.H. 2nd et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype // Neurobiol. Aging. 2006. V. 27. № 3. P. 451–458. https://doi.org/10.1016/j.neurobiolaging.2005.03.016
- Rhea E.M., Banks W.A. Role of the Blood-Brain Barrier in Central Nervous System Insulin Resistance // Front. Neurosci. 2019. V. 13. P. 521. https://doi.org/10.3389/fnins.2019.00521
- Rizzo M.R., Di Meo I., Polito R. et al. Cognitive impairment and type 2 diabetes mellitus: Focus of SGLT2 inhibitors treatment // Pharmacol. Res. 2022. V. 176. P. 106062. https://doi.org/10.1016/j.phrs.2022.106062
- Rom S., Zuluaga-Ramirez V., Gajghate S. et al. Hyperglycemia-Driven Neuroinflammation Compromises BBB Leading to Memory Loss in Both Diabetes Mellitus (DM) Type 1 and Type 2 Mouse Models // Mol. Neurobiol. 2019. V. 56. P. 1883–1896. https://doi.org/10.1007/s12035-018-1195-5
- Romanova I.V., Derkach K.V., Mikhrina A.L. et al. The Leptin, Dopamine and Serotonin Receptors in Hypothalamic POMC-Neurons of Normal and Obese Rodents // Neurochem. Res. 2018. V. 43. № 4. P. 821–837. https://doi.org/10.1007/s11064-018-2485-z
- Sakaguchi M. The role of insulin signaling with FOXO and FOXK transcription factors // Endocr. J. 2024. V. 71. P. 939–944. https://doi.org/10.1507/endocrj.EJ24-0205
- Sammut M.J., Dotzert M.S., Melling C.W.J. Mechanisms of insulin resistance in type 1 diabetes mellitus: A case of glucolipotoxicity in skeletal muscle // J. Cell. Physiol. 2024. V. 239. № 12. P. e31419. https://doi.org/10.1002/jcp.31419
- Sanchez-Rangel E., Deajon-Jackson J., Hwang J.J. Pathophysiology and management of hypoglycemia in diabetes // Ann. N. Y. Acad. Sci. 2022. V. 1518. P. 25–46. https://doi.org/10.1111/nyas.14904
- Santiago J.C.P., Hallschmid M. Outcomes and clinical implications of intranasal insulin administration to the central nervous system // Exp. Neurol. 2019. V. 317. P. 180–190. https://doi.org/10.1016/j.expneurol.2019.03.007
- Schatz S., Gutiérrez G.R. Enhancing socio-communicative functions in an MCI patient with intra-nasal insulin: A case report // Front. Psychiatry. 2024. V. 15. P. 1326702. https://doi.org/10.3389/fpsyt.2024.1326702
- Schilling T.M., Ferreira de Sá D.S., Westerhau- sen R. et al. Intranasal insulin increases regional cerebral blood flow in the insular cortex in men independently of cortisol manipulation // Hum. Brain Mapp. 2014. V. 35. P. 1944–1956. https://doi.org/10.1002/hbm.22304
- Schmitzberger F., Fowler J., Hsu C.H. et al. High-dose intranasal insulin in an adaptive dose-escalation study in healthy human participants // Clin. Transl. Sci. 2024. V. 17. № 11. P. e70071. https://doi.org/10.1111/cts.70071
- Schneider E., Spetter M.S., Martin E. et al. The effect of intranasal insulin on appetite and mood in women with and without obesity: An experimental medicine study // Int. J. Obes. (Lond). 2022. V. 46. P. 1319–1327. https://doi.org/10.1038/s41366-022-01115-1
- Schubert M., Gautam D., Surjo D. et al. Role for neuronal insulin resistance in neurodegenerative diseases // Proc. Natl. Acad. Sci. USA. 2004. V. 101. P. 3100–3105. https://doi.org/10.1073/pnas.0308724101
- Shalimova A., Graff B., Gąsecki D. et al. Cognitive Dysfunction in Type 1 Diabetes Mellitus // J. Clin. Endocrinol. Metab. 2019. V. 104. № 6. P. 2239–2249. https://doi.org/10.1210/jc.2018-01315
- Sharma S., Brown C.E. Microvascular basis of cognitive impairment in type 1 diabetes // Pharmacol. Ther. 2022. V. 229. P. 107929. https://doi.org/10.1016/j.pharmthera.2021.107929
- Shpakov A.O. Mechanisms of action and therapeutic potential of proinsulin C-peptide // J. Evol. Biochem. Physiol. 2017. V. 53. № 3. P. 180–190. https://doi.org/10.1134/S0022093017030024
- Shpakov A.O., Chistyakova O.V., Derkach K.V., Moiseyuk I.V., Bondareva V.M. Intranasal insulin affects adenylyl cyclase system in rat tissues in neonatal diabetes // Central Eur. J. Biol. 2012. V. 7. № 1. P. 33–47. https://doi.org/10.2478/s11535-011-0089-6
- Shpakov A.O., Derkach K.V., Berstein L.M. Brain signaling systems in the Type 2 diabetes and metabolic syndrome: Promising target to treat and prevent these diseases // Future Sci. OA. 2015. V. 1. № 3. P. FSO25. https://doi.org/10.4155/fso.15.23
- Shpakov A.O., Derkach K.V., Chistyakova O.V. et al. Effect of intranasal insulin and serotonin on functional activity of the adenylyl cyclase system in myocardium, ovary, and uterus of rats with prolonged neonatal model of diabetes mellitus // J. Evol. Biochem. Physiol. 2013. V. 49. № 2. P. 153–164. https://doi.org/10.1134/S0022093013020047
- Shpakov A.O., Zorina I.I., Derkach K.V. Hot Spots for the Use of Intranasal Insulin: Cerebral Ischemia, Brain Injury, Diabetes Mellitus, Endocrine Disorders and Postoperative Delirium // Int. J. Mol. Sci. 2023. V. 24. № 4. P. 3278. https://doi.org/10.3390/ijms24043278
- Sorokoumov V.N., Shpakov A.O. Protein phosphotyrosine phosphatase 1B: Structure, function, role in the development of metabolic disorders and their correction by the enzyme inhibitors // J. Evol. Biochem. Physiol. 2017. V. 53. № 4. P. 259–270. https://doi.org/10.1134/S0022093017040020
- Souto S.B., Campos J.R., Fangueiro J.F. et al. Multiple Cell Signalling Pathways of Human Proinsulin C-Peptide in Vasculopathy Protection // Int. J. Mol. Sci. 2020. V. 21. P. 645. https://doi.org/10.3390/ijms21020645
- Steen E., Terry B.M., Rivera E.J. et al. Impaired Insulin and Insulin-like Growth Factor Expression and Signaling Mechanisms in Alzheimer’s Disease — Is This Type 3 Diabetes? // JAD. 2005. V. 7. P. 63–80. https://doi.org/10.3233/JAD-2005-7107
- Sukhov I.B., Lebedeva M.F., Zakharova I.O. et al. Intranasal Administration of Insulin and Gangliosides Improves Spatial Memory in Rats with Neonatal Type 2 Diabetes Mellitus // Bull. Exp. Biol. Med. 2020. V. 168. № 3. P. 317–320. https://doi.org/10.1007/s10517-020-04699-8
- Sukhov I.B., Shipilov V.N., Chistyakova O.V. et al. Long-term intranasal insulin admini-stration improves spatial memory in male rats with prolonged type 1 diabetes mellitus and in healthy rats // Dokl. Biol. Sci. 2013. V. 453. № 5. P. 349–352. https://doi.org/10.1134/S001249661306015X
- Sun Y., Dinenno F.A., Tang P., Kontaridis M.I. Protein tyrosine phosphatase 1B in metabolic and cardiovascular diseases: From mechanisms to therapeutics // Front. Cardiovasc. Med. 2024. V. 11. P. 1445739. https://doi.org/10.3389/fcvm.2024.1445739
- Turvey S., Muench S.P., Issad T. et al. Using site-directed mutagenesis to further the understanding of insulin receptor-insulin like growth factor-1 receptor heterodimer structure // Growth Horm. IGF Res. 2024. V. 77. P. 101607. https://doi.org/10.1016/j.ghir.2024.101607
- Vanhaesebroeck B., Guillermet-Guibert J., Graupera M., Bilanges B. The emerging mechanisms of isoform-specific PI3K signaling // Nat. Rev. Mol. Cell. Biol. 2010. V. 11. P. 329–341. https://doi.org/10.1038/nrm2882
- Wagner L., Veit R., Fritsche L. et al. Sex differences in central insulin action: Effect of intranasal insulin on neural food cue reactivity in adults with normal weight and overweight // Int. J. Obes. (Lond). 2022. V. 46. № 9. P. 1662–1670. https://doi.org/10.1038/s41366-022-01167-3
- Wang Y., Sun L., He G. et al. Cerebral perfusion alterations in type 2 diabetes mellitus – a systematic review // Front. Neuroendocrinol. 2021. V. 62. P. 100916. https://doi.org/10.1016/j.yfrne.2021.100916
- White M.F., Kahn C.R. Insulin action at a molecular level — 100 years of progress // Mol. Metab. 2021. V. 52. P. 101304. https://doi.org/10.1016/j.molmet.2021.101304
- Wingrove J., Swedrowska M., Scherließ R. et al. Characterisation of nasal devices for delivery of insulin to the brain and evaluation in humans using functional magnetic resonance imaging // J. Control Release. 2019. V. 302. P. 140–147. https://doi.org/10.1016/j.jconrel.2019.03.032
- Xu F., Shi J. Insulin signaling and oxidative stress: Bridging the gap between type 2 diabetes mellitus and Alzheimer's disease // J. Alzheimers Dis. 2025. V. 103. P. 994–1004. https://doi.org/10.1177/13872877241307404
- Yosten G.L., Maric-Bilkan C., Luppi P., Wah- ren J. Physiological effects and therapeutic potential of proinsulin C-peptide // Am. J. Physiol. Endocrinol. Metab. 2014. V. 307. № 11. P. E955–E968. https://doi.org/10.1152/ajpendo.00130.2014
- Yu Y., Kastin A.J., Pan W. Reciprocal interactions of insulin and insulin-like growth factor I in receptor-mediated transport across the blood-brain barrier // Endocrinology. 2006. V. 147. P. 2611–2615. https://doi.org/10.1210/en.2006-0020
- Zakharova I.O., Bayunova L.V., Derkach K.V. et al. Effect of intranasally administered insulin and gangliosides on metabolic parameters and activity of the hepatic insulin system in rats with types 2 diabetes mellitus // J. Evol. Biochem. Physiol. 2022. V. 58. № 2. P. 380–394. https://doi.org/https://doi.org/10.1134/S0022093022020077
- Zakharova I.O., Bayunova L.V., Derkach K.V. et al. Intranasal Insulin and Gangliosides Correct Cognitive Impairments and Signaling Pathways in the Hippocampus of Rats with Type 2 Diabetes Mellitus // J. Evol. Biochem. Physiol. 2023. V. 59. № 6. P. 1935–1953. https://doi.org/10.1134/S0022093023060042
- Zakharova I.O., Bayunova L.V., Zorina I.I. et al. Insulin and brain gangliosides prevent metabolic disorders caused by activation of free radical reactions after two-vessel ischemia – reperfusion injury to the rat forebrain // J. Evol. Biochem. Physiol. 2022. V. 58. № 2. P. 279–291. https://doi.org/10.1134/S0022093022010240
- Zakharova I.O., Bayunova L.V., Zorina I.I. et al. Insulin and alpha-tocopherol enhance the protective effect of each other on brain cortical neurons under oxidative stress conditions and in rat two-vessel forebrain ischemia /reperfusion injury // Int. J. Mol. Sci. 2021. V. 22. № 21. P. E11768. https://doi.org/10.3390/ijms222111768
- Zakharova I.O., Sorokoumov V.N., Bayu- nova L.V. et al. 4-Oxo-1,4- dihydrocinnoline derivative with phosphatase 1B inhibitor activity enhances leptin signal transduction in hypothalamic neurons // J. Evol. Biochem. Physiol. 2018. V. 54. № 4. P. 273–280. https://doi.org/10.1134/S0022093018040038
- Zhang D., Wang M., Gao J. et al. Altered Functional Connectivity of Insular Subregions in Type 2 Diabetes Mellitus // Front. Neurosci. 2021. V. 15. P. 676624. https://doi.org/10.3389/fnins.2021.676624
- Zhang H., Hao Y., Manor B. et al. Intranasal insulin enhanced resting-state functional connectivity of hippocampal regions in type 2 diabetes // Diabetes. 2015. V. 64. P. 1025–1034. https://doi.org/10.2337/db14-1000
- Zhao J., Yin L., Jiang L. et al. PTEN nuclear translocation enhances neuronal injury after hypoxia-ischemia via modulation of the nuclear factor-κB signaling pathway // Aging. 2021. V. 13. P. 16165–16177. https://doi.org/10.18632/aging.203141
- Zhao S., Veit R., Semeia L. et al. Sex differences in insulin induced hippocampus functional connectivity during visual food cue presenta- tion // J. Clin. Endocrinol. Metab. 2024. P. dgae833. https://doi.org/10.1210/clinem/dgae833
- Zheng M., Wang C., Hu M. et al. Research progress on the association of insulin resistance with type 2 diabetes mellitus and Alzheimer's disease // Metab. Brain Dis. 2024. V. 40. № 1. P. 35. https://doi.org/10.1007/s11011-024-01472-y
Қосымша файлдар
