Perivascular Adipose Tissue: Role in Regulation of Vascular Tone at Normal Phisiological States and Obesity
- 作者: Pankova M.N.1, Lobov G.I.1
-
隶属关系:
- Pavlov Institute of Physiology of the Russian Academy of Sciences
- 期: 卷 56, 编号 3 (2025)
- 页面: 24-42
- 栏目: Articles
- URL: https://pediatria.orscience.ru/0301-1798/article/view/693395
- DOI: https://doi.org/10.7868/S3034611825030023
- ID: 693395
如何引用文章
详细
Perivascular adipose tissue (PVAT) surrounds most mammalian blood vessels, it may be considered as the 4th layer of the vessel wall due to existence of the close contact with the adventitia. The unique location of the PVAT determines the great significance of the paracrine influences of the factors secreted by it, many of which are vasoactive modulators (adipokines, angiotensins, gasotransmitters, cytokines). Under physiological conditions, the secretion of these substances causes a pronounced anticontractile effect on vascular smooth muscles, and the existence of mutual influences between PVAT and the vascular wall allows for fine regulation of vascular tone for adequate blood supply to organs and tissues in accordance with their metabolic needs. Dysfunctional changes occurring in adipose tissue during obesity lead to changes in the expression and secretion of substances, and the protective effect of PVAT on vascular tone is transformed to a procontractile effect, enhancing vascular reactivity to the action of vasoconstrictor agents and leading to an increase in arterial pressure. The objective of the review is to present the current state of research regarding the specific functioning of the PVAT, its influence on vascular tone through secreted substances both in normal conditions and under dysfunction caused by obesity. Special emphasis is placed on paracrine effects, studying which serves as a prerequisite for future development of therapies aimed at treating vascular disorders targeting the PVAT.
作者简介
M. Pankova
Pavlov Institute of Physiology of the Russian Academy of Sciences
Email: mpankova@bk.ru
St. Petersburg, 199034 Russia
G. Lobov
Pavlov Institute of Physiology of the Russian Academy of Sciences
Email: LobovGI@infran.ru
St. Petersburg, 199034 Russia
参考
- Александрова Н.П. Ожирение как основной фактор влияния метаболического синдрома на функцию внешнего дыхания // Успехи физиол. наук. 2024. Т. 55. № 4. С. 113–124. https://doi.org/ 10.31857/S030117982404006
- Лобов Г.И. Сократительная функция брыжеечных лимфатических узлов крыс при ожирении // Вопросы питания. 2024. Т. 93. № 4 (554). С. 39–48. https://doi.org/10.33029/0042-8833-2024-93-4-39-48
- Панькова М.Н. Дисфункциональные изменения брыжеечных артерий в ранние сроки ожирения крыс при высокожировой диете // Ожирение и метаболизм. 2022. Т. 19. № 2. С. 158–165. https://doi.org/10.14341/omet12842
- Панькова М.Н. Эндотелий-независимое антисократительное влияние периваскулярной жировой ткани аорты крысы в норме и при метаболических нарушениях, индуцированных диетой кафе // Росс. физиологический журнал им. И.М. Сеченова. 2023. Т. 109. № 12. С. 1870–1872. https://doi.org/10.31857/S0869813923120075
- Панькова М.Н. Возврат к стандартному питанию после высококалорийной диеты улучшает метаболические показатели и реактивность аорты крысы // Ожирение и метаболизм. 2024. Т. 21. № 4. С. 416–423. https://doi.org/10.14341/omet13105
- Подзолков В.И., Брагина А.Е., Осадчий К.К. и др. Эктопическое ожирение у пациентов без клинически значимых сердечно-сосудистых заболеваний: ориентировочные нормативы, частота и клинические характеристики // Терапевтический архив. 2022. Т. 94. № 9. С. 1072–1077. https://doi.org/10.26442/00403660.2022.09.201847. – EDN JJMRAU.
- Achari A.E., Jain S.K. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction // Int. J. Mol. Sci. 2017. V. 18. № 6. Р. 1321. https://doi.org/10.3390/ijms18061321
- Aghamohammadzadeh R., Greenstein A.S., Yadav R. et al. Effects of bariatric surgery on human small artery function: Evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity // J. Am. Coll.Cardiol. 2013. V. 62. № 2. P. 128–135. https://doi.org/ 10.1016/j.jacc.2013.04.027
- Akcabag E., Bayram Z., Kucukcetin I.O. et al. Functional effects of visfatin in isolated rat mesenteric small resistance arteries // Eur. J. Pharmacol. 2021. V. 908. P. 174333 https://doi.org/10.1016/j.ejphar.2021.174333
- Akoumianakis I., Antoniades C. The interplay between adipose tissue and the cardiovascular system: Is fat always bad? // Cardiovasc. Res. 2017. V. 113. № 9. P. 999–1008. https://doi.org/10.1093/cvr/cvx111.
- Antoniades C., Tousoulis D., Vavlukis M. et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers // European heart journal. 2023. V. 44. № 38. P. 3827–3844. https://doi.org/10.1093/eurheartj/ehad484
- Antonopoulos A.S., Sanna F., Sabharwal N. et al. Detecting human coronary inflammation by imaging perivascular fat // Sci. Transl. Med. 2017. V. 9. № 398. P. eaal2658. https://doi.org/10.1126/scitranslmed.aal2658
- Atawia R.T., Faulkner J.L., Mehta V. et al. Endothelial leptin receptor is dispensable for leptin-induced sympatho-activation and hypertension in male mice // Vascul. Pharmacol. 2022. V. 146. P. 107093. https://doi.org/10.1016/j.vph.2022.107093.
- Banerjee R., Chiku T., Kabil O. et al. Assay methods for H2S biogenesis and catabolism enzymes // Methods Enzymol. 2015. V. 554. P. 189–200. https://doi.org/ 10.1016/bs.mie.2014.11.016
- Barp C.G., Bonaventura D., Assreuy J. NO, ROS, RAS, and PVAT: More Than a Soup of Letters // Front. Physiol. 2021. V. 12. P. 640021. https://doi.org/10.3389/fphys.2021.640021
- Bartness T.J., Vaughan C.H., Song C.K. Sympathetic and sensory innervation of brown adipose tissue // Int. J. Obes. (Lond). 2010. V. 34. Suppl 1(01). P. S36–42. https://doi.org/10.1038/ijo.2010.182.
- Baylie R., Ahmed M., Bonev A.D. et al. Lack of direct effect of adiponectin on vascular smooth muscle cell BKCa channels or Ca2+ signaling in the regulation of small artery pressure-induced constriction // Physiol. Rep. 2017. V. 5. № 16. P. e13337. https://doi.org/10.14814/phy2.13337
- Bayram Z., Akcabag E., Ozbey G. et al. The Functional Effects of Visfatin on Human Left Internal Mammary Artery // J. Cardiovasc. Pharmacol. 2022. № 80. № 5. P. 725–731. https://doi.org/10.1097/FJC.0000000000001327.
- Bharadwaj L.A., Prasad K. Mechanism of superoxide anion-induced modulation of vascular tone // Int. J. Angiol. 2002. V. 11. P. 23–29. https://doi.org/10.1007/s00547-001-0049-5.
- Blüher M. Metabolically Healthy Obesity // Endocr. Rev. 2020. V. 41. № 3. P. bnaa004. https://doi.org/10.1210/endrev/bnaa004
- Bolić B., Mijušković A., Popović-Bijelić A. et al. Reactions of superoxide dismutases with HS(-)/H2S and superoxide radical anion: An in vitro EPR study // Nitric Oxide. 2015. V. 51. P. 19–23. https://doi.org/10.1016/j.niox.2015.09.008
- Brown N.K., Zhou Z., Zhang J. et al. Perivascular adipose tissue in vascular function and disease: Areview of current research and animal models // Arterioscler. Thromb. Vasc. Biol. 2014. V. 34. № 8. P. 1621–30. https://doi.org/10.1161/ATVBAHA.114.303029
- Burgoyne J.R., Madhani M., Cuello F. et al. Cysteine redox sensor in PKGIa enables oxidant-induced activation // Science. 2007. V. 317. № 5843. P. 1393–1397. https://doi.org/10.1126/science.1144318
- Bussey C.E., Withers S.B., Saxton S.N. et al. β3-Adrenoceptor stimulation of perivascular adipocytes leads to increased fat cell-derived NO and vascular relaxation in small arteries // Br. J. Pharmacol. 2018. V. 175. № 18. P. 3685–3698. https://doi.org/10.1111/bph.14433
- Cacanyiova S., Golas S., Zemancikova A. et al. The Vasoactive Role of Perivascular Adipose Tissue and the Sulfide Signaling Pathway in a Nonobese Model of Metabolic Syndrome // Biomolecules. 2021. V. 11. № 1. P. 108. https://doi.org/10.3390/biom11010108
- Ceron C.S., Luizon M.R., Palei A.C. The Potential Role of Visfatin in Mediating Vascular Dysfunction and Hypertension // J. Cardiovasc. Pharmacol. 2023. V. 82. № 5. Р. 347–349. https://doi.org/10.1097/FJC.0000000000001457
- Chait A., den Hartigh L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease // Front. Cardiovasc. Med. 2020. V. 7. Р. 22. https://doi.org/10.3389/fcvm.2020.00022
- Chang L., Villacorta L., Li R. et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis // Circulation. 2012. V. 126. № 9. Р. 1067–1078. https://doi.org/10.1161/CIRCULATIONAHA.112.104489
- Chang Y.H., Chang D.M., Lin K.C. et al. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: A meta-analysis and systemic review // Diabetes/metabolism research and reviews. 2011. V. 27. № 6. Р. 515–527. https://doi.org/10.1002/dmrr.1201
- Chatterjee T.K., Stoll L.L., Denning G.M. et al. Proinflammatory phenotype of perivascular adipocytes: Influence of high-fat feeding // Circulation research. 2009. V. 104. № 4. Р. 541–549. https://doi.org/10.1161/CIRCRESAHA.108.182998.
- Chen H.H., Tseng Y.J., Wang S.Y. et al. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity // Int. J. Obes. (Lond). 2015. V. 39. № 8. Р. 1241–1248. https://doi.org/10.1038/ijo.2015.65
- Cheng C.K., Bakar H.A., Gollasch M., Huang Y. Perivascular adipose tissue: The sixth man of the cardiovascular system // Cardiovasc. Drugs Ther. 2018. V. 32. Р. 481–502. https://doi.org/10.1007/S10557-018-6820-Z
- Cinti S. The adipose organ // Prostaglandins Leukot. Essent. Fatty Acids. 2005. V. 73. № 1. Р. 9–15. https://doi.org/10.1016/j.plefa.2005.04.010
- Contreras G.A., Thelen K., Ayala-Lopez N., Wat- ts S.W. The distribution and adipogenic potential of perivascular adipose tissue adipocyte progenitors is dependent on sexual dimorphism and vessel location // Physiological reports. 2016. V. 4. № 19. Р. e12993. https://doi.org/10.14814/phy2.12993
- Costa R.M., Filgueira F.P., Tostes R.C. et al. H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction // Vascul. Pharmacol. 2016. V. 84. Р. 28–37. https://doi.org/10.1016/j.vph.2016.05.008.
- Denizalti M., Bozkurt T.E., Akpulat U. et al. The vasorelaxant effect of hydrogen sulfide is enhanced in streptozotocin-induced diabetic rats // Naunyn Schmiedebergs Arch. Pharmacol. 2011. V. 383. № 5. Р. 509–517. https://doi.org/10.1007/s00210-011-0601-6
- Dessie G., Ayelign B., Akalu Y., Shibabaw T., MollaM.D. Effect of Leptin on Chronic Inflammatory Disorders: Insights to Therapeutic Target to Prevent Further Cardiovascular Complication // Diabetes, metabolic syndrome and obesity: targets and therapy. 2021. V. 14. Р. 3307–3322. https://doi.org/10.2147/DMSO.S321311
- Dos Reis Costa D.E.F., Silveira A.L.M., Cam- pos G.P. et al. High-Carbohydrate Diet Enhanced the Anticontractile Effect of Perivascular Adipose Tissue Through Activation of Renin-Angiotensin System // Front. Physiol. 2021. V. 11. Р. 628101. https://doi.org/10.3389/fphys.2020.628101.
- Efremova A., Senzacqua M., Venema W. et al. A large proportion of mediastinal and perirenal visceral fat of Siberian adult people is formed by UCP1 immunoreactive multilocular and paucilocular adipocytes // J. Physiol. Biochem. 2020. V. 76. № 2. Р. 185–192. https://doi.org/10.1007/s13105-019-00721-4.
- Emont M.P., Jacobs C., Essene A.L. et al. A single-cell atlas of human and mouse white adipose tis- sue // Nature. 2022. V. 603. № 7903. Р. 926–933. https://doi.org/10.1038/s41586-022-04518-2
- Fang L., Zhao J., Chen Y. et al. Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator // J. Hypertens. 2009. V. 27. № 11. Р. 2174–2185. https://doi.org/10.1097/HJH.0b013e328330a900
- Farr O.M., Gavrieli A., Mantzoros C.S. Leptin applications in 2015: what have we learned about leptin and obesity? // Curr. Opin. Endocrinol. Diabetes Obes. 2015. V. 22. № 5. Р. 353–359. https://doi.org/10.1097/MED.0000000000000184.
- Fésüs G., Dubrovska G., Gorzelniak K. et al. Adiponectin is a novel humoral vasodilator // Cardiovasc Res. 2007. V. 75. № 4. Р. 719–727. https://doi.org/10.1016/j.cardiores.2007.05.025
- Formentini L., Moroni F., Chiarugi A. Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo // Biochem. Pharmacol. 2009. V. 77. Р. 1612–1620.https://doi.org/10.1016/j.bcp.2009.02.017
- Fortuño A., Rodríguez A., Gómez-Ambrosi J. et al. Leptin inhibits angiotensin II-indu-ced intracellular calcium increase and vasoconstriction in the rat aorta // Endocrinology. 2002. V. 143. № 9. Р. 3555–3560. https://doi.org/10.1210/en.2002-220075.
- Furukawa S., Fujita T., Shimabukuro M. et al. Increased oxidative stress in obesity and its impact on metabolic syndrome // The Journal of clinical investigation. 2004. V. 114. № 12. Р. 1752–1761. https://doi.org/10.1172/JCI21625.
- Gálvez-Prieto B., Bolbrinker J., Stucchi P. et al. Comparative expression analysis of the renin-angiotensin system components between white and brown perivascular adipose tissue // J. Endocrinol. 2008. V. 197. № 1. Р. 55–64. https://doi.org/10.1677/JOE-07-0284
- Gao Y.J., Lu C., Su L.Y. et al. Modulation of vascular function by perivascular adipose tissue: The role of endothelium and hydrogen peroxide // Br. J. Pharmacol. 2007. V. 151. Р. 323–331. https://doi.org/10.1038/sj.bjp.0707228.
- Gao Y.J., Takemori K., Su L.Y. et al. Perivascular adipose tissue promotes vasoconstriction: the role of superoxide anion // Cardiovasc. Res. 2006. V. 71. № 2. Р. 363–373. https://doi.org/10.1016/j.cardiores.2006.03.013.
- Gil-Ortega M., Somoza B., Huang Y. et al. Regional differences in perivascular adipose tissue impacting vascular homeostasis // Trends in Endocr. Metab. 2015. V. 26. № 7. Р. 367–375. https://doi.org/10.1016/j.tem.2015.04.003.
- Giordano A., Smorlesi A., Frontini A. et al. White, brown and pink adipocytes: The extraordinary plasticity of the adipose organ // Eur. J. Endocrinol. 2014. V. 170. № 5. Р. R159–R171. https://doi.org/10.1530/EJE-13-0945
- Gomart S., Gaudreau-Ménard C., Jespers P. et al. Leptin-Induced Endothelium-Independent Vasoconstriction in Thoracic Aorta and Pulmonary Artery of Spontaneously Hypertensive Rats: Role of Calcium Channels and Stores // PLoS One. 2017. V. 12. № 1. Р. e0169205. https://doi.org/10.1371/journal.pone.0169205.
- Gossl M., Herrmann J., Tang H. et al. Prevention of vasa vasorumneovascularization attenuates early neointima formation in experimental hypercholesterolemia // Basic Res. Cardiol. 2009. V. 104. № 6. Р. 695–706. https://doi.org/10.1007/s00395-009-0036-0
- Hajer G.R., van Haeften T.W., Visseren F.L. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases // Eur. Heart J. 2008. V. 29. № 24. Р. 2959–2971. https://doi.org/10.1093/eurheartj/ehn387
- Hillock-Watling C., Gotlieb A.I. The pathobiology of perivascular adipose tissue (PVAT), the fourth layer of the blood vessel wall // Cardiovasc. Pathol. 2022. V. 61. Р. 107459. https://doi.org/10.1016/j.carpath.2022.107459
- Huang Y., Tang C., Du J., Jin H. Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System // Oxid. Med. Cell Longev. 2016. V. 2016. Р. 8961951. https://doi.org/10.1155/2016/8961951.
- Jamroz-Wiśniewska A., Gertler A., Solomon G. et al. Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: role of nitric oxide and hydrogen sulfide // PLoS One. 2014. V. 9. № 1. Р. e86744. https://doi.org/10.1371/journal.pone.0086744
- Kida M., Sugiyama T., Yoshimoto T., Ogawa Y. Hydrogen sulfide increases nitric oxide production with calcium-dependent activation of endothelial nitric oxide synthase in endothelial cells // Eur. J. Pharm. Sci. 2013. V. 48. № 1–2. Р. 211–215. https://doi.org/10.1016/j.ejps.2012.11.001.
- Klüner L.V., Oikonomou E.K., Antoniades C. Assessing Cardiovascular Risk by Using the Fat Attenuation Index in Coronary CT Angiography // Radiol. Cardiothorac. Imaging. 2021. V. 3. № 1. Р. e200563. https://doi.org/10.1148/ryct.2021200563
- Knock G.A., Snetkov V.A., Shaifta Y. et al. Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca(2+) sensitization // Free Radic. Biol. Med. 2009. V. 46. № 5. Р. 633–642. https://doi.org/10.1016/j.freeradbiomed
- Koenen M., Hill M.A., Cohen P., Sowers J.R. Obesity, Adipose Tissue and Vascular Dysfunc- tion // Circ. Res. 2021. V. 128. № 7. Р. 951–968. https://doi.org/10.1161/CIRCRESAHA.121.318093
- Kuji I., Imabayashi E., Minagawa A. et al. Brown adipose tissue demonstrating intense FDG uptake in a patient with mediastinal pheochromocytoma // Ann. Nucl. Med. 2008. V. 22. № 3. Р. 231–235. https://doi.org/10.1007/s12149-007-0096-x
- Kwok K.H., Lam K.S., Xu A. Heterogeneity of white adipose tissue: molecular basis and clinical implications // Exp. Mol. Med. 2016. V. 48. № 3. Р. e215. https://doi.org/10.1038/emm.2016.5
- Landsberg L., Aronne L.J., Beilin L.J. et al. Obesity-related hypertension: Pathogenesis, cardiovascular risk, and treatment: a position paper of the The Obesity Society and The American Society of Hypertension // Obesity (Silver Spring). 2013. V. 21. № 1. Р. 8–24. https://doi.org/10.1002/oby.20181.
- Lázaro-Suárez M.L., Domínguez de la Mora I., Rodríguez-Aguilar J.C. et al. Role of Perivascular Adipose Tissue in Aorta Reactivity from Obese and Hyperglycemic CD-1 Mice: New Insights into Perivascular Adipose Tissue // Metabolic syndrome and related disorders. 2023. V. 21. № 2. Р. 101–108. https://doi.org/10.1089/met.2022.0050
- Lee H.Y., Despres J.P., Koh K.K. Perivascular adipose tissue in the pathogenesis of cardiovascular disease // Atherosclerosis. 2013. V. 230. № 2. Р. 177–84. https://doi.org/10.1016/j.atherosclerosis.2013.07.037
- Lee Y.C., Chang H.H., Chiang C.L. et al. Role of perivascular adipose tissue-derived methyl palmitate in vascular tone regulation and pathogenesis of hypertension // Circulation. 2011. V. 124. № 10. Р. 1160–1171. https://doi.org/10.1161/CIRCULATIONAHA.111.027375
- Lee Y.C., Chang H.H., Liu C.H. et al. Methyl palmitate: A potent vasodilator released in the retina // Invest. Ophthalmol. Vis. Sci. 2010. V. 51. № 9. Р. 4746–4753. https://doi.org/10.1167/iovs.09-5132
- Lenz M., Arts I.C.W., Peeters R.L.M. et al. Adipose tissue in health and disease through the lens of its building blocks // Sci. Rep. 2020. V. 10. № 1. Р. 10433. https://doi.org/10.1038/s41598-020-67177-1
- Liu C.H., Hsu H.J., Tseng T.L. et al. COMT-Catalyzed Palmitic Acid Methyl Ester Biosynthesis in Perivascular Adipose Tissue and its Potential Role Against Hypertension // J. Pharmacol. Exp. Ther. 2020. V. 373. № 2. Р. 175–183. https://doi.org/10.1124/jpet.119.263517.
- Löhn M., Dubrovska G., Lauterbach B. et al. Periadventitial fat releases a vascular relaxing fac- tor // FASEB J. 2002. V. 16. № 9. Р. 1057–1063. https://doi.org/10.1096/fj.02-0024com
- Lu Z., Jiang Z., Tang J. et al. Functions and origins of cardiac fat // FEBS J. 2023. V. 290. № 7. Р. 1705–1718. https://doi.org/10.1111/febs.16388
- Lu C., Su L.Y., Lee R.M., Gao Y.J. Mechanisms for perivascular adipose tissue-mediated potentiation of vascular contraction to perivascular neuronal stimulation: The role of adipocyte-derived angiotensin II // Eur. J. Pharmacol. 2010. V. 634. № 1–3. Р. 107–112. https://doi.org/10.1016/j.ejphar.2010.02.006.
- Man A.W.C., Zhou Y., Xia N., Li H. Endothelial Nitric Oxide Synthase in the Perivascular Adipose Tissue // Biomedicines. 2022. V. 10. Р. 1754. https://doi.org/10.3390/biomedicines10071754
- Maniyadath B., Zhang Q., Gupta R.K., Man-drup S. Adipose tissue at single-cell resolution // Cell metabolism. 2023. V. 35. № 3. Р. 386–413. https://doi.org/10.1016/j.cmet.2023.02.002
- Mather K.J., Funahashi T., Matsuzawa Y. et al. Adiponectin, change in adiponectin, and progression to diabetes in the Diabetes Prevention Program // Diabetes. 2008. V. 57. № 4. Р. 980–986. https://doi.org/10.2337/db07-1419
- Mellott E., Faulkner J.L. Mechanisms of leptin-induced endothelial dysfunction // Curr. Opin. Nephrol. Hypertens. 2023. V. 32. № 2. Р. 118–123. https://doi.org/10.1097/MNH.0000000000000867
- Mendizabal Y., Llorens S., Nava E. Vasoactive effects of prostaglandins from the perivascular fat of mesenteric resistance arteries in WKY and SHROB rats // Life Sci. 2013. V. 93. Р. 1023–1032. https://doi.org/10.1016/j.lfs.2013.10.021.
- Mughal A., O'Rourke S.T. Vascular effects of apelin: Mechanisms and therapeutic potential // Pharmacol. Ther. 2018. V. 190. Р. 139–147. https://doi.org/10.1016/j.pharmthera.2018.05.013
- Mustafa A.K., Sikka G., Gazi S.K. et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels // Circ. Res. 2011. V. 109. № 11. Р. 1259–1268. https://doi.org/10.1161/CIRCRESAHA.111.240242.
- Neeland I.J., Ross R., Després J.P. et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement // The lancet. Diabetes Еndocrinol. 2019. V. 7. № 9. Р. 715–725. https://doi.org/10.1016/S2213-8587(19)30084-1
- Neves K.B., Lobato N.S., Lopes R.A. et al. Chemerin reduces vascular nitric oxide /cGMP signalling in rat aorta: A link to vascular dysfunction in obesity? // Clinical science. 2014. V. 127. № 2. Р. 111–122. https://doi.org/10.1042/CS20130286.
- Nóbrega N., Araújo N.F., Reis D. et al. Hydrogen peroxide and nitric oxide induce anticontractile effect of perivascular adipose tissue via renin angiotensin system activation // Nitric Oxide. 2019. V. 84. Р. 50–59. https://doi.org/10.1016/j.niox.2018.12.011
- Obradovic M., Sudar-Milovanovic E., Soskic S. et al. Leptin and Obesity: Role and Clinical Implication // Front. Endocrinol. 2021. V. 12. Р. 585887. https://doi.org/10.3389/fendo.2021.585887.
- Oelkrug R., Polymeropoulos E.T., Jastroch M. Brown adipose tissue: Physiological function and evolutionary significance // J. Comp. Physiol B. 2015. V. 185. № 6. Р. 587–606. https://doi.org/10.1007/s00360-015-0907-7.
- Ohashi K., Shibata R., Murohara T., Ouchi N. Role of anti-inflammatory adipokines in obesity-related diseases // TEM. 2014. V. 25. № 7. Р. 348–355. https://doi.org/10.1016/j.tem.2014.03.009
- Oikonomou E.K., Marwan M., Desai M.Y. et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data // Lancet. 2018. V. 392. № 10151. Р. 929–939. https://doi.org/10.1016/S0140-6736(18)31114-0
- Padilla J., Jenkins N.T., Vieira-Potter V.J., Laughlin M.H. Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues // Am. J. Рhysiol. Reg. Integr. Comp. Physiol. 2013. V. 304. № 7. Р. R543–R552. https://doi.org/10.1152/ajpregu.00567.2012.
- Pan X., Kaminga A.C., Wen S.W., Acheampong K., Liu A. Omentin-1 in diabetes mellitus: A systematic review and meta-analysis // PloS one. 2019. V. 14. № 12. Р. e0226292. https://doi.org/10.1371/journal.pone.0226292
- Phillips S.A., Somberg L.B., Hatoum O.A., Gutterman D.D. Mechanisms of hydrogen peroxide induced vasoconstriction in human adipose resistance arteries // FASEB J. 2007. V. 21. Р. A491. https://doi.org/10.1096/fasebj.21.5.A491-c.
- Police S.B., Thatcher S.E., Charnigo R. et al. Obesity promotes inflammation in periaortic adipose tissue and angiotensin II-induced abdominal aortic aneurysm formation //Arterioscl. Thromb. Vasc. Biol. 2009. V. 29. № 10. Р. 1458–1464. https://doi.org/10.1161/ATVBAHA.109.192658
- Rahmouni K. Obesity-associated hypertension: Recent progress in deciphering the pathogenesis // Hypertension. 2014. V. 64. № 2. Р. 215–221. https://doi.org/10.1161/HYPERTENSIONAHA.114.00920.
- Reilly S.M., Saltiel A.R. Adapting to obesity with adipose tissue inflammation // Nat. Rev. Endocrinol. 2017. V. 13. Р. 633–643. https://doi.org/10.1038/nrendo.2017.90.
- Rikitake Y. The apelin/APJ system in the regulation of vascular tone: friend or foe? // J. Вiochem. 2021. V. 169. № 4. Р. 383–386. https://doi.org/10.1093/jb/mvaa129
- Romacho T., Valencia I., Ramos-González M. et al. Visfatin/eNampt induces endothelial dysfunction in vivo: A role for Toll-Like Receptor 4 and NLRP3 inflammasome // Sci. Rep. 2020. V. 10. Р. 5386. https://doi.org/10.1038/s41598-020-62190-w
- Sahin A.S., Bariskaner H. The mechanisms of vasorelaxant effect of leptin on isolated rabbit aorta // Fundam. Clin. Pharmacol. 2007. V. 21. № 6. Р. 595–600. https://doi.org/10.1111/j.1472-8206.2007.00541.x
- Sahin A.S., Bariskaner H., Gökbel H., Okudan N. The dual effects of leptin on aortic rings with and without endothelium isolated from streptozotocin-induced diabetic rats // Methods Find. Exp. Clin. Pharmacol. 2009. V. 31. № 5. Р. 325–329. https://doi.org/10.1358/mf.2009.31.5.1380464.
- Saito T., Kurazumi H., Suzuki R. et al. Perivascular Adipose Tissue Is a Major Source of Nitric Oxide in Saphenous Vein Grafts Harvested via the No-Touch Technique // J. Am. Hear. Assoc. 2022. V. 11. Р. e020637. https://doi.org/10.1161/JAHA.120.020637.
- Saito M., Okamatsu-Ogura Y., Matsushita M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity // Diabetes. 2009. V. 58. № 7. Р. 1526–1531. https://doi.org/10.2337/db09-0530.
- Santiago E., Climent B., Muñoz M. et al. Hydrogen peroxide activates store-operated Ca(2+) entry in coronary arteries // Br. J. Рharmacol. 2015. V. 172. № 22. Р. 5318–5332. https://doi.org/10.1111/bph.13322.
- Santos R.A., Ferreira A.J., Pinheiro S.V. et al. Angiotensin-(1-7) and its receptor as a potential targets for new cardiovascular drugs // Expert. Opin. Investig. Drugs. 2005. V. 14. № 8. Р. 1019–1031. https://doi.org/10.1517/13543784.14.8.1019
- Santos R.A., Sampaio W.O., Alzamora A.C. et al. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7) // Physiol. Rev. 2018. V. 98. № 1. Р. 505–553. https://doi.org/10.1152/physrev.00023.2016
- Schleifenbaum J., Köhn C., Voblova N. et al. Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide // J. Hypertens. 2010. V. 28. № 9. Р. 1875–1882. https://doi.org/10.1097/HJH.0b013e32833c20d5
- Schroeter M.R., Eschholz N., Herzberg S. et al. Leptin-dependent and leptin-independent paracrine effects of perivascular adipose tissue on neointima formation // Arterioscler. Thromb. Vasc. Biol. 2013. V. 33. № 5. Р. 980–987. https://doi.org/10.1161/ATVBAHA.113.301393
- Sena C.M., Pereira A., Fernandes R. et al. Adiponectin improves endothelial function in mesenteric arteries of rats fed a high-fat diet: Role of perivascular adipose tissue // Br. J. Pharmacol. 2017. V. 174. № 20. Р. 3514–3526. https://doi.org/10.1111/bph.13756
- Shabalina I.G., Ost M., Petrovic N. et al. Uncoupling protein-1 is not leaky // Biochim. Biophys. Acta. 2010. V. 1797. Р. 773–784.https://doi.org/10.1016/j.bbabio.2010.04.007
- Small H.Y., McNeilly S., Mary S. et al. Resistin Mediates Sex-Dependent Effects of Perivascular Adipose Tissue on Vascular Function in the Shrsp // Scientific reports. 2019. V. 9. № 1. Р. 6897. https://doi.org/10.1038/s41598-019-43326-z
- Soltis E.E., Cassis L.A. Influence of perivascular adipose tissue on rat aortic smooth muscle responsiveness // Clin. Exp. Hypertens. A. 1991. V. 13. № 2. Р. 277–296. https://doi.org/10.3109/10641969109042063
- Stanek E., Czamara K. Imaging of perivascular adipose tissue in cardiometabolic diseases by Raman spectroscopy: Towards single-cell analysis // Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 2024. V. 1869. № 5. Р. 159484. https://doi.org/10.1016/j.bbalip.2024.159484.
- Stastny J., Bienertova-Vasku J., Vasku A. Visfatin and its role in obesity development // Diabetes Metab. Syndr. 2012. V. 6. № 2. Р. 120–124. https://doi.org/10.1016/j.dsx.2012.08.011
- Sun C., Yu W., Lv B. et al. Role of hydrogen sulfide in sulfur dioxide production and vascular regulation // PloS One. 2022. V. 17. № 3. Р. e0264891. https://doi.org/10.1371/journal.pone.0264891
- Szasz T., Webb R.C. (2012) Perivascular adipose tissue: More than just structural support // Clin. Sci. V. 122. № 1. Р. 1–12. https://doi.org/10.1042/CS20110151
- Van Dam A.D., Boon M.R., Berbée J.F.P. et al. Targeting white, brown and perivascular adipose tissue in atherosclerosis development // Eur. J. Pharmacol. 2017. V. 816. Р. 82–92. https://doi.org/10.1016/j.ejphar.2017.03.051
- Van Gaal L.F., Mertens I.L., De Block C.E. Mechanisms linking obesity with cardiovascular disease // Nature. 2006. V. 444. № 7121. Р. 875–880. https://doi.org/10.1038/nature05487
- Victorio J.A., Davel A.P. Perivascular Adipose Tissue Oxidative Stress on the Pathophysiology of Cardiometabolic Diseases // Curr. Hypertens. Rev. 2020. V. 16. № 3. Р. 192–200. https://doi.org/10.2174/1573402115666190410153634
- Victorio J.A., Fontes M.T., Rossoni L.V., Davel A.P. Different Anti-Contractile Function and Nitric Oxide Production of Thoracic and Abdominal Perivascular Adipose Tissues // Frontiers in physiology. 2016. V. 7. Р. 295. https://doi.org/10.3389/fphys.2016.00295
- Villarroya F., Cereijo R., Villarroya J., Giralt M. Brown adipose tissue as a secretory organ // Nat Rev Endocrinol. 2017. V. 13. № 1. Р. 26–35. https://doi.org/10.1038/nrendo.2016.136.
- Wabel E.A., Krieger-Burke T., Watts S.W. Vascular chemerin from PVAT contributes to norepinephrine and serotonin-induced vasoconstriction and vascular stiffness in a sex-dependent manner // Am. J. Physiol. 2024. V. 327. № 6. P. H1577–H1589. https://doi.org/10.1152/ajpheart.00475.2024
- Wang J., Gao Y., Lin F. et al. Omentin-1 attenuates lipopolysaccharide (LPS)-induced U937 macrophages activation by inhibiting the TLR4/MyD88/NF-κB signaling // Arch. Вiochem. Вiophys. 2020. V. 679. Р. 108187. https://doi.org/10.1016/j.abb.2019.108187
- Wang N., Kuczmanski A., Dubrovska G., Gol-lasch M. Palmitic Acid Methyl Ester and Its Relation to Control of Tone of Human Visceral Arteries and Rat Aortas by Perivascular Adipose Tissue // Front. Physiol. 2018. V. 9. Р. 583. https://doi.org/10.3389/fphys.2018.00583
- Wang P., Xu T.Y., Guan Y.F. et al. Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide // Cardiovasc. Res. 2009. V. 81. № 2. Р. 370–380. https://doi.org/10.1093/cvr/cvn288
- Weston A.H., Egner I., Dong Y. et al. Stimulated release of a hyperpolarizing factor (ADHF) from mesenteric artery perivascular adipose tissue: Involvement of myocyte BKCa channels and adiponectin // Br. J. Pharmacol. 2013. V. 169. № 7. Р. 1500–1509. https://doi.org/10.1111/bph.12157
- Withers S.B., Bussey C.E., Saxton S.N. et al. Mechanisms of adiponectin-associated perivascular function in vascular disease //Arterioscler. Thromb. Vasc. Biol. 2014. V. 34. № 8. Р. 1637–1642. https://doi.org/10.1038/srep4457110.1161/ATVBAHA.114.303031
- Withers S.B., Forman R., Meza-Perez S. et al. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality // Scientific reports. 2017. V. 7. Р. 44571. https://doi.org/10.1038/srep44571
- Xia N., Horke S., Habermeier A. et al. Uncoupling of Endothelial Nitric Oxide Synthase in Perivascular Adipose Tissue of Diet-Induced Obese Mice // Arterioscler. Thromb. Vasc. Biol. 2016. V. 36. № 1. Р. 78–85. https://doi.org/10.1161/ATVBAHA.115.306263
- Xia N., Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction // Br. J. Pharmacol. 2017. V. 174. № 20. Р. 3425–3442. https://doi.org/10.1111/bph.13650.
- Yamawaki H., Hara N., Okada M., Hara Y. Visfatin causes endothelium-dependent relaxation in isolated blood vessels // Biochem. Biophys. Res. Commun. 2009. V. 383. № 4. Р. 503–508. https://doi.org/10.1016/j.bbrc.2009.04.074
- Yamawaki H., Tsubaki N., Mukohda M. et al. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels // Biochem. Biophys. Res. Comm. 2010. V. 393. № 4. Р. 668–672. https://doi.org/10.1016/j.bbrc.2010.02.053
- Yang T., Du Y. Distinct roles of central and peripheral prostaglandin E2 and EP subtypes in blood pressure regulation // Am. J. Hypertens. 2012. V. 25. Р. 1042–1049. https://doi.org/10.1038/ajh.2012.67.
- Yao Q., Huang Y., Liu A.D. et al. The vasodilatory effect of sulfur dioxide via SGC/cGMP/PKG pathway in association with sulfhydryl-dependent dimerization. //Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016. V. 310. № 11. Р. R1073-80. https://doi.org/10.1152/ajpregu.00101.2015
- Yudkin J.S., Eringa E., Stehouwer C.D. ‘Vasocrine’ signalling from perivascular fat: Amechanism linking insulin resistance to vascular disease // Lancet. 2005. V. 365. Р. 1817–1820. https://doi.org/10.1016/S0140-6736(05)66585-3
- Zamanian M.Y., Maleki S., Oghenemaro E.F. et al. Omentin-1 as a promising biomarker and therapeutic target in hypertension and heart failure: A comprehensive review // Naun.-Schm. Arch. Pharmacol. 2025. 10.1007/s00210-025-04008-y. https://doi.org/10.1007/s00210-025-04008-y
- Zhang H., Huang Y., Bu D. et al. Endogenous sulfur dioxide is a novel adipocyte-derived inflammatory inhibitor // Sci. Rep. 2016. V. 6. Р. 27026. https://doi.org/10.1038/srep27026
- Zhang Y., Proenca R., Maffei M. et al. Positional Cloning of the Mouse Obese Gene and its Human Homologue // Nature. 1994. V. 372. Р. 425–432. https://doi.org/10.1038/372425a0
- Zhang Y.Y., Shi Y.N., Zhu N. et al. PVAT targets VSMCs to regulate vascular remodelling: Angel or demon // Journal of drug targeting / 2021. V. 29. № 5. Р. 467–475. https://doi.org/10.1080/1061186X.2020.1859515
补充文件
