Synthesis of new derivatives of 18-membered macrocycles by cyclocondensation of pyrazole series hydrazine hydrazides

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Studies on the synthesis of new representatives of 18-membered nitrogenous macrogeterocycles of the biacylhydrazone type based on N-phenacyl- and N-carbalkoxymethylpyrazoles having a carboxyalkyl or acetyl group in the ring carbon atoms were conducted.

全文:

受限制的访问

作者简介

A. Kharaneko

Southern Federal University

编辑信件的主要联系方式.
Email: antonhar08@rambler.ru
ORCID iD: 0000-0002-8677-2647

Institute of Physical and Organic Chemistry

俄罗斯联邦, prosp. Stachki, 194/2, Rostov-on-Don, 344090

A. Morkovnik

Southern Federal University

Email: antonhar08@rambler.ru
ORCID iD: 0000-0002-9182-6101

Institute of Physical and Organic Chemistry

俄罗斯联邦, prosp. Stachki, 194/2, Rostov-on-Don, 344090

O. Kharaneko

Litvinenko Institute of Physical-Organic and Coal Chemistry

Email: antonhar08@rambler.ru
ORCID iD: 0000-0003-1105-8227
俄罗斯联邦, ul. R. Luxemburg, 70, Donetsk, 283048

O. Demidov

North-Caucasus Federal University

Email: antonhar08@rambler.ru
ORCID iD: 0000-0002-3586-0487
俄罗斯联邦, ul. Pushkina, 1a, Stavropol

参考

  1. Foldesi T., Dancso A., Simig G., Volk B., Milen M. Tetrahedron. 2016, 72 (35), 5427–5432. doi: 10.1016/j.tet.2016.07.029
  2. Харанеко А.О. ЖОрХ. 2017, 53(5), 727-734. [Kharaneko A.O. Rus. J. Org. Chem. 2017, 53, 738–745.] doi: 10.1134/S1070428017050153
  3. Bohza S., Bohdan N., Stepanova D., Nikolaev A., Suikov S. ChemRxiv. 2022. doi: 10.26434/chemrxiv-2022-p1vj9
  4. Kharaneko A.O., Pekhtereva T.M., Kharaneko O.I., Morkovnik A.S. Russ. J. Org. Chem. 2024, 60, 430–436. doi: 10.1134/S1070428024030096
  5. Харанеко А.О., Харанеко О.И. ЖОрХ. 2018, 54, 738–742. [Kharaneko A.O., Kharaneko O.I. Russ. J. Org. Chem. 2018, 54, 742–746.] doi: 10.1134/S1070428018050111
  6. Chen C., Wei T., Nanoscale Horiz. 2022, 7, 1121–1135. doi: 10.1039/D2NH00242F
  7. Харанеко А.О., Харанеко О.И. ЖОрХ. 2019, 55 (3), 341–346. [Kharaneko A.O., Kharaneko O.I. Russ. J. Org. Chem. 2019, 55(3), 291–295.] doi: 10.1134/S1070428019030023
  8. Харанеко А.О. ЖОрХ. 2016, 52 (6), 904–908. [Kharaneko A.O., Russ. J. Org. Chem. 2016, 52 (6), 892–896.] doi: 10.1134/S1070428016060221
  9. Shutalev A.D., Fesenko A.A., Kuzmina O.M., Volov A.N., Albov D.V., Chernyshev V.V., Zamilatskov I.A. Tetrahedron Lett. 2014, 55, 5481–5485. doi: 10.1016/j.tetlet.2014.08.016
  10. Fesenko A.A., Shutalev A.D. Tetrahedron. 2015, 71, 9528–9543. doi 0.1016/j.tet.2015.10.079
  11. Yamazaki Sh., Lam J.LSh., Johnson T.W. J.L. Practical Medicinal Chemistry with Macrocycles, Ch. 18. Ed. E. Marsault, Wiley, Hoboken, 2017.
  12. Jimenez D.G., Poongavanam V., Kihelbery J. J. Med. Chem. 2023, 66 (8), 5377–5396. doi: 10.1021/acs.jmedchem.3c00134
  13. Cherfi M., Harit T., Yahyaoui M. I., Riahi A., Asehraou A., Malek F. J. Mol. Struct. 2022, 26, 1261, 132947,1261. doi: 10.1016/j.molstruc.2022.132947.
  14. Delius M., Geertsema E., Leigh D. Nature Chem. 2010, 2, 96–101. doi: 10.1038/nchem.481
  15. Delius M., Geertsema E.M., Leigh D.A., Tang D-T. D. J. Am. Chem. Soc. 2010, 132 (45), 16134–16145. doi: 10.1021/ja106486b
  16. Budagumpi S., Sathisha M.P., Kulkarni N.V., Kurdekar G.S., Revankar V.K. J. Incl. Phenom. Macrocycl. Chem. 2010, 66, 327–333. doi: 10.1007/s10847-009-9649-z
  17. Reddy P.M, Rohini R, Krishna E.R, Hu A, Ravinder V. Int. J. Mol. Sci. 2012, 13 (4), 4982–4992. doi: 10.3390/ijms13044982.
  18. Krishna E.R., Reddy P.M., Sarangapani M., Hanmanthu G., Geeta B., Rani K.Sh., Ravinder V. Spectrochim. Acta. Part A: Mol. Biomol. Spectroscopy. 2012, 97, 189–196. doi: 10.1016/j.saa.2012.05.073
  19. Rawat P., Singh R.N. Arab. J. Chem. 2019, 12 (7), 1219–1233. doi: 10.1016/j.arabjc.2014.10.050
  20. Jiang T., Tian H.-Q., Yu H.-H., Huang Ch., Zhu B.-X. Tetrahedron. 2023, 144, 133595. doi: 10.1016/j.tet.2023.133595
  21. Shu Zh., Sun Sh., Gu N., Yang Zh., Shang Y., Yang Yi, Xia M., Lin B., Yang P. Analyt. Chim. Acta. 2023, 1253, 341093. doi: 10.1016/j.aca.2023.341093
  22. Malek F., Harit T., Cherfi M., Kim B. Molecules. 2022, 27 (7), 2123–2149. doi: 10.3390/molecules27072123
  23. Amrhein J.A., Berger M. L., Balourdas D.I., Joerger A.C., Menge A., Kramer A., Frischkom J.M., Berger B.T., Elson L., Kaiser A., Schubert-Zsilavecz M., Muller S., Knapp S.K., Hanker T. J. Med. Chem. 2024, 67, 674–690. doi: 10.1021/acs.jmedchem3c01980
  24. Schuitema A.M., Aubel P.G., Koval I.A., Engelen M., Driessen W.L., Reedijk J., Lutz M., Spek A.L. Inorg. Chim. Acta. 2003, 355, 374–385. doi: 10.1016/S0020-1693(03)00362-1.
  25. Beeren S.R., Sanders J.K.M. Chem. Sci. 2011, 2, 1560–1567. doi: 10.1039/C1SC00168J
  26. Chio W.-I. K., Lee T.-Ch., Macrocycle‐Functionalised Nanosensors, Jenny Stanford Publishing, Singapore, 2024.
  27. Belda R., Pitarch-Jarque J., Soriano C., Llinares J.M., Blasco S., Ferrando-Soria J., García-Espan E. Inorg. Chem. 2013, 52 (19), 10795–10803. doi: 10.1021/ic400645t
  28. Laurent L., Pilar N., Carlos M., Vicente A.J., Carmen O., Francisco E., Enrique G-E. Julio L., Santiago L.V., Juan M.F. J. Am. Chem. Soc. 2001, 123, 10560–10570. doi: 10.1021/ja010956p.
  29. Харанеко А.О., Пехтерева Т.М., Харанеко О.И. ЖОрХ. 2020, 56, 619–627. [Kharaneko A.O., Pekhtereva T.M., Kharaneko O.I. Russ. J. Org. Chem. 2020, 56, 654–661.] doi: 10.1134/S1070428020040144
  30. Zheng L.W., Xuan H.Z., Liu Y.R., Zhao B.X., Liu J.T., Miao J.Y. Helv. Chim. Acta. 2012, 95, 134–143. doi: 10.1002/hlca.201100249
  31. Харанеко А.О. ЖОрХ. 2016, 52, 1334–1337. [Kharaneko A.O. Russ. J. Org. Chem. 2016, 52, 1322–1325.] doi: 10.1134/S1070428016090128
  32. Mengeş N., Sari O., Abdullayev Y., Erdem S.S., Balci M., J. Org. Chem. 2013, 78 (11), 5184–5195. doi: 10.1021/jo4001228
  33. CrysAlisPro, version 1.171.38.41, Rigaku Oxford Diffraction, Oxford, 2015.
  34. Sheldrick G.M., Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3–8. doi: 10.1107/S2053273314026370
  35. Sheldrick G.M., Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8. doi: 10.1107/S2053229614024218
  36. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H.J. Appl. Crystallogr. 2009, 42, 339–341. doi: 10.1107/S0021889808042726
  37. Granovsky A.A., Firefly, version 8, http://classic.chem.msu.su/gran/firefly/index.html.
  38. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. J. Comput. Chem. 1993, 14 (11), 1347–1363. doi: 10.1002/jcc.540141112

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1

下载 (968KB)
3. Scheme 2

下载 (739KB)
4. Scheme 3

下载 (491KB)
5. Scheme 4

下载 (789KB)
6. Scheme 5

下载 (808KB)
7. Scheme 6

下载 (626KB)
8. Fig. 1. Molecular structure of macrocyclic compound 7b according to X-ray diffraction data with atoms represented by thermal vibration ellipsoids with 50% probability.

下载 (1MB)
9. Fig. 2. Structure of 2 forms of compound 18 with a Ci-symmetric (a) and asymmetric (b) cycloconformer, according to quantum chemical calculation data.

下载 (680KB)
10. Content

下载 (32KB)

版权所有 © Russian Academy of Sciences, 2025