Association of proteolysis factors with progression of autosomal dominant polycystic kidney disease in children


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease with an incidence of 1:400 to 1:1000, accounting for 7-10% of all patients with end-stage chronic renal disease. Predicting the rate of disease progression has become especially important today with the advent of tolvaptan, the first drug modifying ADPKD. Patients with a high likelihood of rapid disease progression should be selected for this treatment, as these patients are expected to have an optimal benefit/risk ratio. The system of matrix metalloproteinases (MMPs) and their inhibitors (tissue inhibitors of MMP - TIMP, type 1 plasminogen activator inhibitor - PAI-I) plays a key role in the processes of proteolysis in the kidney. Objective. Determination of the blood serum levels of MMP-2, -3 and -9 and their inhibitors TIMP-1 and -2, PAI-I and their urinary excretion, estimating of the relationship of their changes with the ADPKD progression type, and assessment of the significance of disturbances in the MMP/TIMP system as an additional criterion for the progression of ADPKD. Material and methods. The study included 36 children with ADPKD who were admitted to the Department of Hereditary and Acquired Kidney Diseases named after Prof. M.S. Ignatova of the Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University. The levels of MMP-2, MMP-3 and MMP-9 and their inhibitors TIMP-1 and -2, and PAI-I in blood serum and urine were determined by enzyme-linked immunosorbent assay. Results. As a result of the analysis of the frequency of changes in proteolysis factors in blood and urine in children with ADPKD, depending on the disease progression type (slow progression/progression), the following data were obtained: in children with ADPKD progression, the frequency of increase in the level of TIMP-I in the blood (P=0.010; Cramer's V=0.479; OR=12; 95% CI, 1.79-80.3)) and urine (P=0.015; Cramer's V=0.482; OR=9.8; 95% CI, 1.84-51.9)) was statistically significantly higher. Also, the level of PAI-I in the blood (P=0.039; Cramer's V=0.396) and urine (P=0.022; Cramer's V=0.444) was statistically significantly higher in children with ADPKD progression. The chances of a progressive course increased by 6.3 times (95% CI, 1.27-31.2) with an increase in blood PAI-I level and by 9.0 times (95% CI, 1.55-52.2) with an increase in urine PAI-I level in children with progressive ADPKD compared to slow progression. Conclusion. The ADPKD progression in childhood is manifested by an increase in the number of cysts and in the size of the kidneys with the preserved filtration function of the kidneys for a long time due to hyperfiltration. This study identifies children at risk for rapid kidney enlargement, i.e. a progressive course that may benefit from therapeutic interventions in the future. The data obtained from this study indicate that TIMP-1 and PAI-I can be considered as risk factors for the progression of ADPKD in children

Full Text

Restricted Access

About the authors

Zilya R. Bashirova

Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University

Email: z-bash@mail.ru
Researcher of the Department of Hereditary and Acquired Kidney Diseases named after Prof. M.S. Ignatova

Ismail M. Osmanov

Children's City Clinical Hospital named after Z.A. Bashlyaeva of the Moscow Healthcare Department

Dr. Sci. (Med.), Professor, Chief Physician of the Children's City Clinical Hospital named after Z.A. Bashlyaeva of the Moscow Healthcare Department, Chief Pediatrician, Chief Pediatric Nephrologist of the Moscow Healthcare Department

References

  1. Ong A.C.M., Devuyst O., Knebelmann B., et al. Autosomal dominant polycystic kidney disease: the changing face of clinical management. Lancet. 2015;385:1993-2002. https://doi.org/10.1016/S0140-6736(15)60907-2
  2. Wong A.T.Y., Mannix C., Grantham J.J., et al. Randomised controlled trial to determine the efficacy and safety of prescribed water intake to prevent kidney failure due to autosomal dominant polycystic kidney disease (PREVENT-ADPKD). BMJ. Open 2018;8:e018794. https://doi.org/10.1136/bmjopen-2017-018794
  3. He W.-B., Xiao W.-J., Tan Y.-Q., et al. Novel mutations of PKD genes in Chinese patients suffering from autosomal dominant polycystic kidney disease and seeking assisted reproduction. BMC. Med. Genet. 2018;19:186. https://doi.org/10.1186/s12881-018-0693-7
  4. De Rechter S., Breysem L., Mekahli D. Is Autosomal Dominant Polycystic Kidney Disease Becoming a Pediatric Disorder? Front. Pediatr. 2017;5:272. https://doi.org/10.3389/fped.2017.00272.
  5. Cornec-Le Gall E., Audrezet M.-P., Chen J.-M., et al. Type of PKD1 mutation influences renal outcome in ADPKD. J. Am. Soc. Nephrol. 2013;24:1006-13. https://doi.org/10.1681/ASN.2012070650
  6. Torres V.E., Chapman A.B., Devuyst O., et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 2012;367:2407-18. https://doi.org/10.1056/NEJMoa1205511
  7. Torres V.E., Chapman A.B., Devuyst O., et al. Tolvaptan in Later -Stage Autosomal Dominant Polycystic Kidney Disease. N. Engl. J. Med. 2017;377:1930-42. https://doi.org/10.1056/NEJMoa1710030
  8. Chapman A.B., Devuyst O., Eckardt K.-U., et al. Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2015;88:17-27. https://doi.org/10.1038/ki.2015.59
  9. Gansevoort R.T., Arici M., Benzing T., et al. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA Working Groups on Inherited Kidney Disorders and European Renal Best Practice. Nephrol. Dial. Transplant. 2016;31: 337-48. https://doi.org/10.1093/ndt/gfv456
  10. Grantham J.J., Torres V.E., Chapman A.B., et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 2006;354:2122-30. https://doi.org/10.1056/NEJMoa054341
  11. Bhutani H., Smith V., Rahbari-Oskoui F., et al. A comparison of ultrasound and magnetic resonance imaging shows that kidney length predicts chronic kidney disease in autosomal dominant polycystic kidney disease. Kidney Int. 2015;88:146-51. https://doi.org/10.1038/ki.2015.71
  12. Irazabal M.V., Rangel L.J., Bergstralh E.J., et al. Imaging Classification of Autosomal Dominant Polycystic Kidney Disease: A Simple Model for Selecting Patients for Clinical Trials. JASN. 2015;26:160-72. https://doi.org/10.1681/ASN.2013101138
  13. Cornec-Le Gall E., Audrezet M.-P., Chen J.-M., et al. Type of PKD1 Mutation Influences Renal Outcome in ADPKD. J. Am. Soc. Nephrol. 2013;24:1006-13. https://doi.org/10.1681/ASN.2012070650
  14. Cornec-Le Gall E., Audrezet M.-P., Rousseau A., et al. The PROPKD Score: A New Algorithm to Predict Renal Survival in Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2016;27:942-51. https://doi.org/10.1681/ASN.2015010016
  15. Rockey D.C., Bell P.D., Hill J.A. Fibrosis-A Common Pathway to Organ Injury and Failure. N. Engl. J. Med. 2015;373:96. https://doi.org/10.1056/NEJMc1504848
  16. Eddy A.A. Can renal fibrosis be reversed? Pediatr. Nephrol. 2005;20:1369-75. https://doi.org/10.1007/s00467-005-1995-5
  17. Eddy A.A. Molecular basis of renal fibrosis. Pediatr. Nephrol. 2020;15:290-301. https://doi.org/10.1007/s004670000461
  18. A Meguid El Nahas., Bello A.K. Chronic kidney disease: the global challenge. Lancet. 2005;365:331-40. https://doi.org/10.1016/S0140-6736(05)17789-7
  19. Bicer A., Guclu B., Ozkan A., et al. Expressions of angiogenesis associated matrix metalloproteinases and extracellular matrix proteins in cerebral vascular malformations. J. Clin. Neurosci. 2010;17:232-36. https://doi.org/10.1016/j.jocn.2009.06.008.
  20. Duffield J.S. Cellular and molecular mechanisms in kidney fibrosis. J. Clin. Invest. 2014;124:2299-306. https://doi.org/10.1172/JCI72267
  21. Norman J. Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD). Biochim. Biophys. Acta. 2011;1812:1327-36. https://doi.org/10.1016/j.bbadis.2011.06.012.
  22. Jeremy S. Duffield. Cellular and molecular mechanisms in kidney fibrosis. J. Clin. Invest. 2014;124(6):2299-306. doi: 10.1172/JCI72267.
  23. Nagase H., Woessner J.F. Matrix metalloproteinases. J. Biol. Chem. 1999;274:21491-94. https://doi.org/10.1074/jbc.274.31.21491
  24. Бобкова И.Н., Козловская Л.В., Ли О.А. Рольматриксныхметаллопротеиназ в патогенезе заболеваний почек. Тер. архив. 2008;6:86-90. [Bobkova I.N., Kozlovskaia L.V., Li O.A. The role of matrix metalloproteinases in pathogenesis of renal disease. Ter Arkh. 2008;80(6):86-90 (In Russ.)].
  25. Catania J.M., Chen G., Parrish A.R. Role of matrix metalloproteinases in renal pathophysiologies. Am. J. Physiol. Renal. Physiol. 2007;292:F905-11. https://doi.org/10.1152/ajprenal.00421.2006
  26. Keeling J., Herrera G.A. Human matrix metalloproteinases: characteristics and pathologic role in altering mesangial homeostasis. Microsc. Res. Tech. 2008;71:371-9. https://goi.org/16.1662/jemt.26585
  27. Sternlicht M.D. How matrix metalloproteinases regulate cell behavior. Ann. Rev. Cell. Dev. Biol. 2001;17:463-516. doi: 10.1146/annurev.cellbio.17.1.463.
  28. Woon C., Bielinski-Bradbury A., O'Reilly K., Robinson P. A systematic review of the predictors of disease progression in patients with autosomal dominant polycystic kidney disease. BMC. Nephrol. 2015;16:140. Doi: 10.1186/ s12882-015-0114-5.
  29. Chapman A.B., Bost J.E., Torres V.E., et al. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 2012;7(3):479-86. doi: 10.2215/CJN.09500911.
  30. Chapman A.B., Guay-Woodford L.M., Grantham J.J., et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney Int. 2663;84:1635-45. doi: 16.1648/j.1523-1755.2663.66125.x.
  31. Lacquaniti A., Chirico V., Lupica R., et al. Apelin and copeptin: two opposite biomarkers associated with kidney function decline and cyst growth in autosomal dominant polycystic kidney disease. Peptides. 2013;49:1-8. doi: 10.1016/j.peptides.2013.08.007
  32. Thong K.M., Ong A.C.M. The natural history of autosomal dominant polycystic kidney disease: 30-year experience from a single centre. QJM. 2013;106:639- 46. doi: 10.1093/qjmed/hct082
  33. Higashihara E., Nutahara K., Okegawa T., et al. Kidney volume and function in autosomal dominant polycystic kidney disease. Clin. Exp. Nephrol. 2614;12:157-85. doi: 16.1667/s16157-613-6234-4.
  34. Gabow P.A., Kimberling W.J., Strain J.D., et al. Utility of ultrasonography in the diagnosis of autosomal dominant polycystic kidney disease in children. J. Am. Soc. Nephrol. 1997;8:105-10. https://doi.org/10.1681/ASN.V81105
  35. Reed B., McFann K., Kimberling W.J., et al. Presence of De Novo Mutations in Autosomal Dominant Polycystic Kidney Disease Patients Without Family History. Am. J. Kidney Dis. 2662;52:1642-56. https://doi.org/86.8653/j.ajkd.2008.05.015
  36. Pei Y., Obaji J., Dupuis A., et al. Unified criteria for ultrasonographic diagnosis of ADPKD. J. Am. Soc. Nephrol. 2009;20:205-12. https://doi.org/10.1681/ASN.2008050507
  37. Reed B., McFann K. Presence of de novo mutations in autosomal dominant polycystic kidney disease patients without family history. Am. J. Kidney Dis. 2008;52(6):1042.
  38. Levin A., Stevens P.E., Bilous R.W., et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013;3:1-150. https://doi.org/10.1038/kisup.2012.73
  39. Bakker J., Olree M., Kaatee R., et al. Renal volume measurements: accuracy and repeatability of US compared with that of MR imaging. Radiol. 1999;211:623-28. https://doi.org/10.1148/radiology.211.3.r99jn19623
  40. Scholbach T., Weitzel D. Body-surface-area related renal volume: a common normal range from birth to adulthood. Scientifica (Cairo) 2012:949164. https://doi.org/10.6064/2012/949164
  41. KUhn E.W., Walz G. The Treatment of Autosomal Dominant Polycystic Kidney Disease. Dtsch. Arztebl. Int. 2015;112:884-90. https://doi.org/10.3238/arztebl.2015.0884.
  42. Grantham J.J., Torres V.E., Chapman A.B., et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 2006;354:2122-30. https://doi.org/10.1056/NEJMoa054341.
  43. Bhutani H, Smith V., Rahbari-Oskoui F., et al. A comparison of ultrasound and magnetic resonance imaging shows that kidney length predicts chronic kidney disease in autosomal dominant polycystic kidney disease. Kidney Int. 2015;88:146-51. https://doi.org/10.1038/ki.2015.71
  44. Leung V.Y., Chu W.C., Yeung C., et al. Nomograms of total renal volume, urinary bladder volume and bladder wall thickness index in 3,376 children with a normal urinary tract. Pediatr. Radiol. 2007;37:181-78. https://doi.org/10.1007/s00247-006-0376-y
  45. Meran S., Steadman R. Fibroblasts and myofibroblasts in renal fibrosis. Int. J. Exp. Pathol. 2011;92:158-67. https://doi.org/10.1111/j.1365-2613.2011.00764.x
  46. Ли О.А. Клиническое значение определения матриксных металлопротеиназ и их ингибиторов в ткани почки и моче при хроническом гломерулонефрите. Дисс. канд. мед. наук. М., 2011.
  47. Eddy A.A. Serine proteases, inhibitors and receptors in renal fibrosis. Thromb. Haemost. 2009;101:656- 64.
  48. Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 2003;92:827-39. https://doi.org/10.1161/01.RES.0000070112.80711.3D
  49. Nagase H., Visse R., Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006;69:562-73. https://doi.org/10.1016/j.cardiores.2005.12.002
  50. Eddy A.A. Molecular basis of renal fibrosis. Pediatr. Nephrol. 2000;15:290 301. https://doi.org/10.1007/s004670000461
  51. Tan T.K., Zheng G., Hsu T.T., et al. Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells. Am. J. Pathol. 2010;176:1256-70. doi: 10.2353/ajpath.2010.090188.
  52. Aresu L., Benali S., Garbisa S., et al. Matrix metalloproteinases and their role in the renal epithelial mesenchymal transition. Histol. Histopathol. 2011;26(3):307-13. doi: 10.14670/HH-26.307.
  53. Sternlicht M.D., Werb Z. How matrix metalloproteinases regulate cell behavior. Апп. Rev. Cell Dev. Biol. 2001;17:463-516. doi: 10.1146/annurev. cellbio.17.1.463.
  54. Ahmed A. Matrix Metalloproteinases and Their Inhibitors in Kidney Scarring: Culprits or Innocents. J. Health Sci. 2009;55:473-83. https://doi.org/10.1248/jhs.55.473
  55. Eddy A.A., Fogo A.B. Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J. Am. Soc. Nephrol. 2006;17:2999-3012. https://doi.org/10.1681/ASN.2006050503
  56. Gomez D.E., Alonso D.F., Yoshiji H., Thorgeirsson U.P. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur. J. Cell Biol. 1997;74:111-22.
  57. Cai G., Zhang X., Hong Q., et al. Tissue inhibitor of metalloproteinase-1 exacerbated renal interstitial fibrosis through enhancing inflammation. Nephrol. Dial. Transplant. 2008;23:1861-75. https://doi.org/10.1093/ndt/gfm666
  58. Horstrup J.H., Gehrmann M., Schneider B., et al. Elevation of serum and urine levels of TIMP-1 and tenascin in patients with renal disease. Nephrol. Dial. Transplant. 2002;17:1005-13. https://doi.org/10.1093/ndt/17.6.1005

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies