Модифицирующее влияние динорфинов и нейрокининов на поведение мальчиков-подростков с ожирением

Обложка

Цитировать

Полный текст

Аннотация

Введение. Ожирение у детей и подростков становится все более актуальной проблемой здравоохранения. Распространенность детского ожирения увеличивается, значительно опережая проводимые по борьбе с ним мероприятия. Один из факторов, усложняющих контроль ожирения, – сложность коррекции поведения, в том числе пищевого (ПП). Недостаточно изучена роль лиганда κ-опиоидного рецептора динорфина (DYN) и сопряженного с ним нейромедиатора системы KNDy нейрокинина В (NKB) в регуляции поведения мальчиков-подростков с ожирением.

Цель. Изучить возможную модифицирующую роль DYN и NKB в поведении, включая ПП, у мальчиков-подростков с ожирением.

Материалы и методы. Обследованы 84 подростка в возрасте 14–17 лет: 57 с ожирением (код Е66.0, Международная классификация болезней 10-го пересмотра) и 27 практически здоровых. Для выявления симптомов нарушений поведения и эмоциональной сферы использовали опросник Ахенбаха (Youth Self Report – YSR 11-18). Для оценки отдельных вариантов изменения ПП, включая ограничительное, эмоциональное и экстернальное, применяли голландский опросник ПП (The Dutch Eating Behavior Questionnaire – DEBQ). Лабораторное исследование включало определение уровней DYN и NKB в плазме крови. Для статистической обработки применяли сетевой анализ.

Результаты. Уровень DYN значимо отрицательно коррелировал с выраженностью нарушения внимания и значимо положительно – с уровнем NKB. В ходе сетевого анализа установлены связи между показателями поведения и эмоций. Уровень DYN оказался связан заметной непосредственной отрицательной связью с нарушениями внимания, с которыми менее выраженной связью той же направленности связан уровень NKB. Между нейромедиаторами также наблюдалась выраженная положительная связь.

Заключение. DYN вносят модицифирующий вклад в поведение подростков, в частности в ПП, агрессивное и девиантное поведение, особенно у пациентов с ожирением, и участвуют в формировании гетерогенности этой патологии.

Полный текст

Доступ закрыт

Об авторах

Игорь Александрович Кельмансон

Национальный медицинский исследовательский центр им. В.А. Алмазова

Автор, ответственный за переписку.
Email: iakelmanson@hotmail.com
ORCID iD: 0000-0002-4449-2786

д-р мед. наук, проф., проф. каф. детских болезней с клиникой лечебного фак-та Института медицинского образования

Россия, Санкт-Петербург

Ирина Леоровна Никитина

Национальный медицинский исследовательский центр им. В.А. Алмазова

Email: iakelmanson@hotmail.com
ORCID iD: 0000-0003-4013-0785

д-р мед. наук, проф., зав. каф. детских болезней с клиникой лечебного фак-та Института медицинского образования

Россия, Санкт-Петербург

Наталья Игоревна Вторникова

Национальный медицинский исследовательский центр им. В.А. Алмазова

Email: iakelmanson@hotmail.com
ORCID iD: 0000-0003-0740-2646

ассистент каф. детских болезней с клиникой лечебного фак-та Института медицинского образования

Россия, Санкт-Петербург

Список литературы

  1. Bixby H, Mishra A, Martinez AR. Worldwide levels and trends in childhood obesity, in Childhood Obesity. Academic Press, 2025.
  2. Cunningham SA, Hardy ST, Jones R, et al. Changes in the Incidence of Childhood Obesity. Pediatrics. 2022;150(2):e2021053708. doi: 10.1542/peds.2021-053708
  3. Spinelli A, Buoncristiano M, Nardoneet P, et al. Thinness, overweight, and obesity in 6 to 9 year old children from 36 countries: The World Health Organization European Childhood Obesity Surveillance Initiative-COSI 2015–2017. Obes Rev. 2021;22(Suppl. 6):e13214. doi: 10.1111/obr.13214
  4. Jha S, Mehendale AM. Increased Incidence of Obesity in Children and Adolescents Post-COVID-19 Pandemic: A Review Article. Cureus. 2022;14(9):e29348. doi: 10.7759/cureus.29348
  5. Boswell N, Byrne R, Davies P. Aetiology of eating behaviours: A possible mechanism to understand obesity development in early childhood. Neurosci Biobehav Rev. 2018;95:438-48. doi: 10.1016/j.neubiorev.2018.10.020
  6. Kansra AR, Lakkunarajah S, Jay MS. Childhood and Adolescent Obesity: A Review. Front Pediatr. 2021;8:581461. doi: 10.3389/fped.2020.581461
  7. Nikitina IL, Vtornikova NI, Kelmanson IA. Clinical heterogeneity of sleep quality, emotional and behavioral characteristics, and eating habits in adolescents with obesity: A cluster analysis. Eur J Pediatr. 2024;183(4):1571-84. doi: 10.1007/s00431-023-05406-1
  8. Вторникова Н.И., Никитина И.Л., Кельмансон И.А. Гетерогенность метаболических фенотипов у мальчиков-подростков с экзогенно-конституциональной формой ожирения. Экспериментальная и клиническая гастроэнтерология. 2024;6:20-30 [Vtornikova NI, Nikitina IL, Kelmanson IA. Heterogeneity of metabolic phenotypes in adolescent boys with obesity due to excess calories. Eksperimentalnaia i Klinicheskaia Gastroenterologiia. 2024;6:20-30 (in Russian)]. doi: 10.31146/1682-8658-ecg-226-6-20-30
  9. Uenoyama Y, Nagae M, Tsuchida H, et al. Role of KNDy neurons expressing kisspeptin, neurokinin B, and dynorphin A as a GnRH pulse generator controlling mammalian reproduction. Front Endocrinol (Lausanne). 2021;12:724632. doi: 10.3389/fendo.2021.724632.021;12:724632
  10. Roddick C, Harris M, Hofman PL. The Metabolic Programming of Pubertal Onset. Clin Endocrinol (Oxf). 2025;102(5):526-38. doi: 10.1111/cen.15138
  11. Никитина И.Л., Юхлина Ю.Н., Саракаева Л.Р., и др. Современная концепция нейроэндокринной и эпигенетической регуляции старта пубертата и полового развития. Трансляционные исследования роли лиганд-рецепторной системы кисспептина kiss/kiss1r. Трансляционная медицина. 2020;7(5):62-80 [Nikitina IL, Yuchlina YuN, Sarakaeva LR. Modern concept of neuroendocrine and epigenetic regulation of the onset of puberty and sexual development. Translational studies on the role of the kiss/kiss1r system. Transliatsionnaia Meditsina. 2020;7(5):62-80 (in Russian)]. doi: 10.18705/2311-4495-2020-7-5-62-80
  12. Shi L, Jiang Z, Zhang L. Childhood obesity and central precocious puberty. Front Endocrinol (Lausanne). 2022;13:1056871.
  13. Shippenberg TS, Zapata A, Chefer VI. Dynorphin and the pathophysiology of drug addiction. Pharmacol Ther. 2007;116(2):306-21. doi: 10.1016/j.pharmthera.2007.06.011
  14. Pliakas AM, Carlson RR, Neve RL, et al. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J Neurosci. 2001;21(18):7397-403. doi: 10.1523/JNEUROSCI.21-18-07397.2001
  15. Mague SD, Pliakas AM, Todtenkopf MS, et al. Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. J Pharmacol Exp Ther. 2003;305(1):323-30. doi: 10.1124/jpet.102.046433
  16. Crowley NA, Bloodgood DW, HardawayJ, et al. Dynorphin controls the gain of an amygdalar anxiety circuit. Cell Rep. 2016;14(12):2774-83. doi: 10.1016/j.celrep.2016.02.069
  17. Bruchas MR, Land BB, Chavkin C. The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res. 2010;1314: 44-55. doi: 10.1016/j.brainres.2009.08.062
  18. Land BB, Bruchas MR, Lemos JC, et al. The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J Neurosci. 2008;28(2):407-14. doi: 10.1523/JNEUROSCI.4458-07.2008
  19. Khawaja XZ, Chattopadhyay AK, Green IC. Increased β-endorphin and dynorphin concentrations in discrete hypothalamic regions of genetically obese (ob/ob) mice. Brain Res. 1991;555(1):164-8. doi: 10.1016/0006-8993(91)90874-u
  20. Berman Y, Devi L, Spangler R, et al. Chronic food restriction and streptozotocin-induced diabetes differentially alter prodynorphin mRNA levels in rat brain regions. Mol Brain Res. 1997;46(1):25-30. doi: 10.1016/s0169-328x(96)00175-1
  21. Nakao K, Iwata K, Takeshita T, Ozawa H. Expression of hypothalamic kisspeptin, neurokinin B, and dynorphin A neurons attenuates in female Zucker fatty rats. Neurosci Lett. 2018;665:135-9. doi: 10.1016/j.neulet.2017.12.002
  22. Minabe S, Iwata K, Tsuchida H, et al. Effect of diet-induced obesity on kisspeptin-neurokinin B-dynorphin A neurons in the arcuate nucleus and luteinizing hormone secretion in sex hormone-primed male and female rats. Peptides. 2021;142:170546. doi: 10.1016/j.peptides.2021.170546
  23. Karkhanis A, Holleran KM, Jones SR. Dynorphin/kappa opioid receptor signaling in preclinical models of alcohol, drug, and food addiction. Int Rev Neurobiol. 2017;136: 53-88. doi: 10.1016/bs.irn.2017.08.001
  24. Cicuendez B, Perez-Garcia J, Folgueira C. A Combination of a Dopamine Receptor 2 Agonist and a Kappa Opioid Receptor Antagonist Synergistically Reduces Weight in Diet-Induced Obese Rodents. Nutrients. 2024;16(3):424. doi: 10.3390/nu16030424
  25. Ghule A, Racz I, Bilkei-Gorzo A, et al. Modulation of feeding behavior and metabolism by dynorphin. Scientific Reports. 2020;10(1):3821. doi: 10.1038/s41598-020-60518-0
  26. Yang JA, Yasrebi A, Snyder M, Roepke TA. The interaction of fasting, caloric restriction, and diet-induced obesity with 17β-estradiol on the expression of KNDy neuropeptides and their receptors in the female mouse. Mol Cell Endocrinol. 2016;437:35-50. doi: 10.1016/j.mce.2016.08.008
  27. Dudek M, Kołodziejski PA, Pruszyńska-Oszmałek E, et al. Effects of orchidectomy and testosterone replacement on numbers of kisspeptin-, neurokinin B-, and dynorphin A-immunoreactive neurones in the arcuate nucleus of the hypothalamus in obese and diabetic rats. J Neuroendocrinol. 2017;29(2). doi: 10.1111/jne.12453
  28. Шагиахметов Ф.Ш., Проскурякова Т.В., Шамакина И.Ю. Динорфин/каппа-опиоидная система мозга как перспективная мишень для терапии зависимости от психоактивных веществ. Нейрохимия. 2015;32:285-94 [Shagiakhmetov FS, Proskuryakova TV, Shamakina IY.The dynorphin/kappa-opioid system of the brain as a promising target for therapy for dependence on psychoactive substances. Neirokhimiia. 2015;32:285-94 (in Russian)]. doi: 10.7868/S1027813315040159
  29. Paris JJ, Reilley KJ, McLaughlin JP. Kappa Opioid Receptor-Mediated Disruption of Novel Object Recognition: Relevance for Psychostimulant Treatment. J Addict Res Ther. 2011;S4. doi: 10.4172/2155-6105.S4-007
  30. Abraham AD, Fontaine HM, Song AJ, et al. κ-Opioid Receptor Activation in Dopamine Neurons Disrupts Behavioral Inhibition. Neuropsychopharmacology. 2018;43(2): 362-72. doi: 10.1038/npp.2017.133
  31. Escobar A, Casanova JP, Andres ME, Fuentealba JA. Crosstalk Between Kappa Opioid and Dopamine Systems in Compulsive Behaviors. Front Pharmacol. 2020;11:57. doi: 10.3389/fphar.2020.00057
  32. Carey AN, Lyons AM, Shay CF, et al. Endogenous κ Opioid Activation Mediates Stress-Induced Deficits in Learning and Memory. J Neurosci. 2009;29(13):4293. doi: 10.1523/JNEUROSCI.6146-08.2009
  33. Mohammadkhani A, Qiao M, Borgland SL. Distinct neuromodulatory effects of endogenous orexin and dynorphin corelease on projection-defined ventral tegmental dopamine neurons. J Neurosci. 2024;44(39). doi: 10.1523/JNEUROSCI.0682-24.2024
  34. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-91. doi: 10.3758/bf03193146
  35. Marshall WA, Tanner JM. Variations in the Pattern of Pubertal Changes in Boys. Arch Dis Child. 1970;45(239):13. doi: 10.1136/adc.45.239.13
  36. Merg F, Filliol D, Usynin I, et al. Big dynorphin as a putative endogenous ligand for the kappa-opioid receptor. J Neurochem. 2006;97(1):292-301. doi: 10.1111/j.1471-4159.2006.03732.x
  37. Achenbach TM, Rescorla LA. Manual for the ASEBA School-age Forms & Profiles: An Integrated System of Multi-informant Assessment. Publicaciones de Psicologia Aplicada: Serie Menor. Burlington: ASEBA, 2001.
  38. Колмагорова А., Слободская Е., Киншт И.А. Оценка психического здоровья в раннем возрасте. Бюллетень Сибирского отделения Российской академии медицинских наук. 2007(3):46-52 [Kolmagorova AV, Slobodskaya HR, Kinscht LA. Mental health assessment in early childhood. Biulleten Sibirskogo Otdeleniia Rossiiskoi Akademii Meditsinskikh Nauk. 2007(3):46-52 (in Russian)]. EDN: IBVCDT
  39. van Strien T, Frijters J, Bergers G, Defares P. The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. Int J Eat Disord. 1986;5(2):295-315. doi: 10.1002/1098-108X(198602)5:2<295::AID-EAT2260050209>3.0.CO;2-T
  40. Borisenkov MF, Popov SV, Pecherkina AA, et al. Food addiction in young adult residents of Russia: Associations with emotional and anthropometric characteristics. Eur Eat Disord Rev. 2020;28(4):465-72. doi: 10.1002/erv.2731
  41. Epskamp S, Fried EI. A tutorial on regularized partial correlation networks. Psychol Methods. 2018;23(4):617-34. doi: 10.1037/met0000167
  42. Abad J, Santacana M, Gomez-Benito J. Emotional and Behavioral Problems as Measured by the YSR: Gender and Age Differences in Spanish Adolescents. Eur J sychol Assess. 2002;18:149-57. doi: 10.1027//1015-5759.18.2.157
  43. Roussos A, Francis K, Zoubou V, et al. The standardization of Achenbach's Youth Self-Report in Greece in a national sample of high school students. Eur Child Adolesc Psychiatry. 2001;10(1):47-53. doi: 10.1007/s007870170046
  44. Braet C, Claus L, Goossens L, et al. Differences in Eating Style between Overweight and Normal-Weight Youngsters. J Health Psychol. 2008;13(6):733-43. doi: 10.1177/1359105308093850
  45. Nagl M, Hilbert A, de Zwaan M, et al. The German Version of the Dutch Eating Behavior Questionnaire: Psychometric Properties, Measurement Invariance, and Population-Based Norms. PLOS ONE. 2016;11(9):e0162510. doi: 10.1371/journal.pone.0162510
  46. Chou TC, Lee CE, Lu J, et al. Orexin (Hypocretin) Neurons Contain Dynorphin. J Neurosci. 2001;21(19):RC168. doi: 10.1523/JNEUROSCI.21-19-j0003.2001
  47. Matzeu A, Kallupi M, George O, et al. Dynorphin Counteracts Orexin in the Paraventricular Nucleus of the Thalamus: Cellular and Behavioral Evidence. Neuropsychopharmacology. 2018;43(5):1010-20. doi: 10.1038/npp.2017.250
  48. Mattar P, Uribe-Cerda S, Pezoa C, et al. Brain site-specific regulation of hedonic intake by orexin and DYN peptides: role of the PVN and obesity. Nutr Neurosci. 2022;25(5):1105-14. doi: 10.1080/1028415X.2020.1840049
  49. Abraham AD, Casello SM, Schattauer SS, et al. Release of endogenous dynorphin opioids in the prefrontal cortex disrupts cognition. Neuropsychopharmacology. 2021;46(13):2330-9. doi: 10.1038/s41386-021-01168-2
  50. Cortese S, Moreira-Maia CR, St Fleur D, et al. Association Between ADHD and Obesity: A Systematic Review and Meta-Analysis. American J Psychiatry. 2016;173(1):34-43. doi: 10.1176/appi.ajp.2015.15020266
  51. Cortese S, Tessari L. Attention-Deficit/Hyperactivity Disorder (ADHD) and Obesity: Update 2016. Curr Psychiatry Rep. 2017;19(1):4. doi: 10.1007/s11920-017-0754-1
  52. Kooij J. ADHD and Obesity. Am J Psychiatry. 2016;173(1):1-2. doi: 10.1176/appi.ajp.2015.15101315
  53. Nigg JT, Johnstone JM, Musser ED, et al. Attention-deficit/hyperactivity disorder (ADHD) and being overweight/obesity: New data and meta-analysis. Clin Psychol Rev. 2016;43:67-79. doi: 10.1016/j.cpr.2015.11.005
  54. Martins-Silva T, Dos Santos Vaz J, Genro JP, et al. Obesity and ADHD: Exploring the role of body composition, BMI polygenic risk score, and reward system genes. J Psychiatr Res. 2021;136:529-36. doi: 10.1016/j.jpsychires.2020.10.026
  55. Moon C, Marion M, Thanos PK, Steiner H. Fluoxetine Potentiates Oral Methylphenidate-Induced Gene Regulation in the Rat Striatum. Mol Neurobiol. 2021;58:4856-70. doi: 10.1007/s12035-021-02466-y

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. График, визуализирующий силу связей между отдельными показателями у обследованных детей.

Скачать (140KB)
3. Рис. 2. Анализ показателей центральности и ожидаемого влияния.

Скачать (120KB)

© ООО "Консилиум Медикум", 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74329 от 19.11.2018 г.