On the most probable energy release in structured media

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of energy release in hierarchically structured media that are “pieces” of matter of various sizes, contained large quantity of reacting particles, for example, molecules, is investigated. The extremes media here are single–molecular (non-clustered) gases of these substances on the one hand, and homogeneous condensed substances on the other. Under natural assumptions about the different quantity of a substance that can enter into an energy release reaction (combustion, explosion, etc.) due to their location on the surface / inside the structure, the dynamics of access to reacting molecules and the obvious probabilistic nature of the process, a combinatorial procedure is carried out to determine the most probable distribution of energy release. In some simple approximation, the energy release is determined by a single parameter of the combinatorial scheme. The most probable distribution is coincided with the distribution of the unconditionally minimum values of energy release. The result may be used for quantitative interpretation of the difference in the values of the heat of combustion, explosion and other processes under various conditions.

Texto integral

Acesso é fechado

Sobre autores

M. Romanovsky

Private Enterprise for Nuclear Industry Scientific Development “Science and Innovations”; National Center for Physics and Mathematics; Pirogov Russian National Research Medical University

Autor responsável pela correspondência
Email: MYRomanovsky@rosatom.ru
Rússia, Moscow; Moscow; Moscow

Bibliografia

  1. Исихара А. Статистическая физика. М.: Мир, 1973. 465 с.
  2. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. Ч. 1. 5-е изд., стереот. М.: Физматлит, 2002. 616 с.
  3. Зельдович Я.Б., Баренблатт Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения и взрыва. М.: Наука, 1980. 479 с.
  4. Стратонович Р.Л. Нелинейная неравновесная термодинамика. М.: Наука, 1985. 480 с.
  5. Holtsmark J. Uber die Verbreiterung von Spektrallinien // Ann. Phys. 1919. V. 58. P. 577–630.
  6. Romanovsky M.Yu. Distibutions of Magnetic Microfiled in Plasmas // Physics Letters A. 1998. V. 249. P. 99–109.
  7. Likalter A.A. Ionization and Electron Transport in Nonideal Plasma / In: Transport and Optical Properties of Nonideal Plasma. Eds. G.A. Kobzev, I.T. Iakubov, M.M. Popovich. N.Y.: Springer, 1995. 318 p.
  8. Romanovsky M.Yu. Model space of economic events // Physica A. 1999. V. 265. P. 264–278.
  9. Romanovsky M.Yu. Truncated Levy distribution of S&P 500 stock index fluctuations. Distribution of one-share fluctuations in a model space // Physica A. 2000. V. 287. P. 450–460.
  10. Romanovsky M.Yu. Most probable distributions and distributions of extremes for particle systems with hierarchical structures // Chaos, Solitons and Fractals. 2022. 159. 112170.
  11. Виленкин Н.Я. Комбинаторика. М.: Наука, 1969. 331 с.
  12. Виленкин Н.Я. Популярная комбинаторика. М.: Наука, 1975. 209 с.
  13. Гумбель Е. Статистика экстремальных значений. М.: Мир, 1965. 450 с.
  14. Справочник по специальным функциям / Под ред. М. Абрамовица и И. Стиган. М.: Наука, 1979. 832 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Distribution functions pimi normalized to 1 (dashed curves 1, 2 and 3) for different normalization parameters α: α = 2.5 (1), α = 1.5 (2), α = 0.5 (3), and also pi = |γ|eγϵi (4). It is assumed that |γ| = 1. Semi-logarithmic scale. The inset shows the same in uniform coordinates.

Baixar (195KB)
3. Fig. 2. Dependence of the mean S of the normalized distribution function on the parameter α, solid curve. For comparison, the dashed curve shows the function . The inset shows the same dependence in semilogarithmic coordinates.

Baixar (135KB)

Nota

Presented by Academician of the RAS B.Yu. Sharkov


Declaração de direitos autorais © Russian Academy of Sciences, 2024