A METHOD FOR DECISION ANALYSIS UNDER UNCERTAINTY WITH A QUALITATIVE ASSESSMENT OF PREFERENCES AND PROBABILITIES
- Authors: Nelyubin A.P1, Podinovski V.V2
-
Affiliations:
- Mechanical Engineering Research Institute RAS
- National Research University Higher School of Economics
- Issue: Vol 524, No 1 (2025)
- Pages: 47-50
- Section: MATHEMATICS
- URL: https://pediatria.orscience.ru/2686-9543/article/view/691496
- DOI: https://doi.org/10.7868/S3034504925040072
- ID: 691496
Cite item
Abstract
In this paper, we consider decision analysis problems in which the preferences of the decision maker are measured on an ordinal scale and the possibilities of realization of an uncertain factor are given as a qualitative probability, either complete or partial.We use this qualitative information to determine preference and indifference relations on the set of decision strategies, suggest a simple decision rule for the comparison of strategies and illustrate this development by several examples.
About the authors
A. P Nelyubin
Mechanical Engineering Research Institute RAS
Email: nelubin@gmail.com
Moscow, Russia
V. V Podinovski
National Research University Higher School of Economics
Email: podinovski@mail.ru
Moscow, Russia
References
- Фишберн П. Теория полезности для принятия решений / Пер. с англ. М.: Наука, 1978. 352 c.
- Ларичев О.И. Теория и методы принятия решений. М.: Логос, 2008. 296 с.
- Briggs R.A. Normative theories of rational choice: expected utility // The Stanford Encyclopedia of Philosophy (Winter 2023 Edition) / E.N. Zalta, U. Nodelman (eds.). https://plato.stanford.edu/archives/win2023/entries/rationality-normative-utility/
- Fishburn P.C. Decision and Value Theory. New York: Wiley, 1964. 451 p.
- Montiel L.V., Bickel E. Decision making with partial probabilistic or preference information // Wiley Encyclopedia of Operations Research and Management Science, 2015. https://onlinelibrary.wiley.com/doi/10.1002/9780470400531.eorms1104
- Fishburn P.C. Linear extensions of additive partial orders // Order. 1997–1998. V. 14. P. 153–169.
- Fishburn P.C. The axioms of subjective probability // Statistical Science. 1986. V. 1. P. 335–345.
- Kraft C.H., Pratt J.W., Seidenberg A. Intuitive probability on finite sets // Annals of mathematical statistics. 1959. V. 30. P. 408–419.
- Нелюбин А.П., Подиновский В.В. Многокритериальные задачи с упорядоченными по важности группами критериев // Автоматика и телемеханика. 2022. №7. С. 119–136.
Supplementary files
