ON THE STABILITY OF HYPERBOLIC EQUATIONS WITH UNBOUNDED TIME DELAY TERM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In this paper, we establish a stability theorem for the initial value problem of hyperbolic equations with an unbounded time delay term in a Hilbert space.We also present a second order of accuracy difference scheme for approximating the solution to this problem and prove a corresponding stability theorem for the proposed difference scheme.

About the authors

A. Ashyralyev

Bahcesehir University; Peoples’ Friendship University of Russia named after Patrice Lumumba; Institute of Mathematics and Mathematical Modeling

Email: aallaberen@gmail.com
Department of Mathematics Istanbul, Turkey; Moscow, Russia; Almaty, Kazakhstan

References

  1. Bellman R., Cooke K. Differential-Difference Equations. New York: Academic Press, 1963.
  2. Cahlon B., Schmidt D. Stability criteria for certain second-order delay differential equations with mixed coefficients // J. Comput. Appl. Math. 2004. V. 170. P. 79–102.
  3. Driver R.D. Ordinary and Delay Differential Equations // Appl. Math. Sci. 1977. V. 20.
  4. El’sgol’ts L.E., Norkin S.B. Introduction to the Theory and Application of Differential Equations with Deviating Arguments. New York: Academic Press, 1973.
  5. Hale J.K., Verduyn Lunel S.M. Introduction to Functional Differential Equations. Berlin: Springer, 1993.
  6. Скубачевский А.Л. К задаче установления равновесия для системы управления с запаздыванием // ДАН. 1994. Т. 335. № 2. С. 157–160.
  7. Власов В.В., Раутиан Н.А. Спектральный анализ функционально-дифференциальных моделей. Москва: МАКС Пресс, 2016. 488 с.
  8. Kolmanovski V., Myshkis A. Applied Theory of Functional Differential Equations. Dordrecht: Kluwer Academic, 1992.
  9. YenicTerio˘glu A.F. The behavior of solutions of second order delay differential equations // Journal of Mathematical Analysis and Applications. 2007. V. 332. № 2. P. 1278–1290.
  10. Ashyralyev A., Sobolevskii P.E. New Difference Schemes for Partial Differential Equations. Basel–Boston–Berlin: Birkhauser Verlag, 2004.
  11. Fattorini H.O. Second Order Linear Differential Equations in Banach Spaces. North-Holland: Elsevier Science Publishing Company, 1985.
  12. Krein S.G. Linear Differential Equations in Banach Space. Providence, R.I.: American Mathematical Society, 1971.
  13. Ashyraliyev M., Ashyralyeva M. Stable difference schemes for hyperbolic-parabolic equations with unknown parameter // Boletn de la Sociedad Matematica Mexicana. 2024. V. 30. № 14. P. 1–19.
  14. Vasilev V.V., Krein S.G., Piskarev S. Operator Semigroups, Cosine Operator Functions, and Linear Differential Equations // Mathematical Analysis. V. 28. (Russian) Itogi Nauki i Tekhniki. 1990. V. 204. P. 87–202. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform. Moscow, 1990. Translated in J. Soviet Math. 1991. V. 54. № 4. P. 1042–1129.
  15. Mohanty R.K. An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients // Applied Mathematics and Computation. 2005. V. 165. № 1. P. 229–236.
  16. Пискарев С. И. Об устойчивости разностных схем в задачах Коши с почти периодическими решениями // Дифференц. уравнения. 1984. Т. 20. № 4. C. 689–695.
  17. Соболевский П. Е., Чеботарева Л. М. Приближенное решение методом прямых задачи Коши для абстрактного гиперболического уравнения // Изв. вузов. Математика. 1977. Т. 5. C. 103–116.
  18. Ashyralyev A., Sobolevskii P. E. A note on the difference schemes for hyperbolic equations // Abstract and Applied Analysis. 2001. V. 6. № 2. P. 63–70.
  19. Ashyralyev A., Pastor J., Piskarev S., Yurtsever H. A. Second order equations in functional spaces: qualitative and discrete well-posedness // Abstract and Applied Analysis. 2015. ID 948321. P. 1–63.
  20. Poorkarimi H., Wiener J. Bounded solutions of non-linear hyperbolic equations with delay // Proceedings of the VII International Conference on Non-Linear Analysis, V. Lakshmikantham, Ed. 1986. V. 1. P. 471–478.
  21. Poorkarimi H., Wiener J. Shah S. M. On the exponential growth of solutions to non-linear hyperbolic equations // Internat. Journ. Math. Sci. 1989. V. 12. P. 539–546.
  22. Wiener J. Generalized Solutions of Functional Differential Equations. Singapore: World Scientific, 1993.
  23. Ashyralyev A., Agirseven D. Bounded solutions of nonlinear hyperbolic equations with time delay // Electronic Journal of Differential Equations. 2018. № 21. P. 1–15.
  24. Vlasov V. V. Research of operator models arising in hereditary mechanics and thermophysics // Inter. Conf. Mathematical Physics, Dynamical Systems and Infinite-Dimensional Analysis. MIPT, RF, 2019.
  25. Ashyralyev A., Vlasov V. V., Ashyralyev C. On the stability of hyperbolic difference equations with unbounded delay term // Boletn de la Sociedad Matematica Mexicana. 2023. V. 29. № 2. P. 27–38.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences