ОБЗОР МЕТОДОВ ПРЕДУПРЕЖДЕНИЯ КОНФЛИКТОВ ПРИ УПРАВЛЕНИИ ВОЗДУШНЫМ ДВИЖЕНИЕМ С ПОМОЩЬЮ ГЛУБОКОГО ОБУЧЕНИЯ С ПОДКРЕПЛЕНИЕМ
- Авторы: КУЛИДА Е.Л1, ЛЕБЕДЕВ В.Г1
-
Учреждения:
- Институт проблем управления им. В.А. Трапезникова РАН, Москва
- Выпуск: № 9 (2025)
- Страницы: 64-92
- Раздел: Обзоры
- URL: https://pediatria.orscience.ru/0005-2310/article/view/691179
- DOI: https://doi.org/10.31857/S0005231025090048
- EDN: https://elibrary.ru/VMUGQH
- ID: 691179
Цитировать
Полный текст



Аннотация
Представлен обзор развития современных подходов к предупреждению конфликтов между воздушными судами на основе глубокого обучения с подкреплением. Рассмотрена базовая концепция обучения с подкреплением и некоторые основные алгоритмы, используемые для предупреждения конфликтов воздушных судов. Представлены модели с дискретными и непрерывными действиями по предупреждению конфликтов в двумерном и трехмерном воздушном пространстве при движении по фиксированным траекториям или в свободном полете. Рассмотрены различные подходы к представлению информации о состоянии воздушного пространства (с помощью вектора состояния и в виде графа) и разные типы взаимодействия между воздушными судами (на основе информации о состоянии окружающих воздушных судов или при помощи обмена сообщениями).
Об авторах
Е. Л КУЛИДА
Институт проблем управления им. В.А. Трапезникова РАН, Москва
Email: elena-kulida@yandex.ru
канд. техн. наук Москва, Россия
В. Г ЛЕБЕДЕВ
Институт проблем управления им. В.А. Трапезникова РАН, Москва
Email: lebedev-valentin@yandex.ru
д-р техн. наук Москва, Россия
Список литературы
- International Civil Aviation Association. Doc 4444: Air Traffic Management // Procedures for Air Navigation Services, 16th ed. ICAO: Montreal, QC, Canada. 2016.
- Кулида Е.Л., Лебедев В.Г. Методы решения задач планирования и регулирования потоков воздушного движения. Ч. 1 // Проблемы управления. 2023. № 1. С. 3–14. https://doi.org/10.25728/pu.2023.1.1
- Brittain M., Wei P. Autonomous Separation Assurance in an High-Density En Route Sector: a Deep Multi-Agent Reinforcement Learning Approach // The 22nd IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand, 2019. https://doi.org/10.109/ITSC.2019.8917217
- Пономарев К.Ю. Метод оценки динамической воздушной обстановки на конфликтность посредством полихромного отображения объектов в информационном обеспечении диспетчера управления воздушным движением // Автореф. дис. канд. техн. наук. СПб.: ФГБОУ ВО СПбГУ ГА им. А.А. Новикова, 2023. 24 с.
- Erzberger H. Automated Conflict Resolution for Air Traffic Control // 25th International Congress of the Aeronautical Sciences (ICAS). Germany, Hamburg. 2006.
- Farley T., Field M., Erzberger H. Fast-time Simulation Evaluation of a Conflict Resolution Algorithm Under High Air Traffic Demand. 2007. https://www.researchgate.net/publication/255062615
- Erzberger H., Heere K. 2010. Algorithm and Operational Concept for Resolving Short-range Conflicts // Proc. Inst. Mechan. Engin., Part G: J. Aerospac. Engin. 2010. V. 224. No. 2. P. 225–243. https://doi.org/10.1243/09544100JAERO546
- Hoekstra J.M., van Gent R.N.H.W., Ruigrok R.C.J. Designing for Safety: The ‘free flight’ Air Traffic Management Concept // Reliab. Engin. Syst. Safet. 2002. V. 75. No. 2. P. 215–232. https://doi.org/10.1016/S0951-8320(01)00096-5
- Clari M.V., Ruigrok R.C.J., Hoekstra J.M., Visser H.G. Cost-benefit Study of Free Flight with Airborne Separation Assurance // Air Traffic Control Quarterly. 2001. V. 9. No. 4. P. 287–309. https://doi.org/10.2514/atcq.9.4.287
- Марьин Н.П. Перспектива внедрения концепции «свободный полет» // Проблемы безопасности полетов. 2009. № 5. С. 42–55.
- Yang Y., Zhang J., Cai K., Prandini M. Multi-aircraft Conflict Detection and Resolution Based on Probabilistic Reach Sets // IEEE Transactions on Control Systems Technology. 2016. V. 25. No. 1. P. 309–316. https://doi.org/10.1109/TCST.2016.2542046
- Орлов В.С. Разработка и исследование алгоритмов обнаружения и предотвращения опасных сближений в воздухе в рамках перспективной системы ОрВД // Дисс.. . . канд. техн. наук. М. ФГБОУ В ПО «Московский авиационный институт (национальный исследовательский университет)». 2015. 116 с.
- Буркин В.С. Синтез алгоритмов обнаружения и разрешения конфликтовстолкновений воздушных судов по информации системы автоматического зависимого наблюдения в условиях неопределенности // Изв. РАН. Теория и системы управления. 2017. № 3. С. 157–169. https://doi.org/10.7868/S0002338817030088
- Кумков С.И., Пятко С.Г. Быстрые алгоритмы обнаружения конфликтных ситуаций между воздушными судами / «Теория оптимального управления и приложения (ОСТА 2022)». Материалы международной конференции. Ин-т мат. и механики им. Н.Н. Красовского (ИММ УрО РАН). Екатеринбург. 2022. С. 126–131.
- Pelegrin M., D’Ambrosio C. Aircraft Deconfliction via Mathematical Programming: Review and Insights // Transportation Science. 2022. V. 56. No. 1. P. 118–140. https://doi.org/10.1287/trsc.2021.1056
- Cafieri S., Conn A.R., Mongeau M. Mixed-integer Nonlinear and Continuous Optimization Formulations for Aircraft Conflict Avoidance via Heading and Speed Deviations // Eur. J. Oper. Res. 2023. V. 310. No. 2. P. 670–679. https://doi.org/10.1016/j.ejor.2023.03.002
- Dias F., Rey D. Aircraft Conflict Resolution with Trajectory Recovery Using Mixedinteger Programming // J. Global Optim. 2024. V. 90. P. 1031–1067. https://doi.org/10.1007/s10898-024-01393-1
- Cecen R.K., Cetek C. Conflict-free En-route Operations with Horizontal Resolution Manoeuvers Using a Heuristic Algorithm // Aeronaut. J. 2020. V. 124. P. 767–785. https://doi.org/10.1017/aer.2020.5
- Eby M. A Self-organizational Approach for Resolving Air Traffic Conflicts // Lincoln Lab. J. 1994. V. 7. No. 2. P. 239–254.
- Balasooriyan S. Multi-aircraft Conflict Resolution Using Velocity Obstacles // MSc thesis. Delft University of Technology. 2017. 126 с.
- Durand N. Constant Speed Optimal Reciprocal Collision Avoidance // Transportation Research. Part C, Emerging Technologies. 2018. P. 366–379. https://doi.org/0.1016/j.trc.2018.10.004
- Pan W., Qin L., He Q., Huang Y. Three-Dimensional Flight Conflict Detection and Resolution Based on Particle Swarm Optimization // Aerospace. 2023. V. 10. No. 9. https://doi.org/10.3390/aerospace10090740
- Sui D., Zhang K. A Tactical Conflict Detection and Resolution Method for En Route Conflicts in Trajectory-Based Operations // J. Advanc. Transport. 2022. No. 2. P. 1–16. https://doi.org/10.1155/2022/9283143
- Brittain M., Wei P. Scalable Autonomous Separation Assurance with Heterogeneous Multi-agent Reinforcement Learning // IEEE Transactions on Automation Science and Engineering. 2022. V. 19. No. 4. P. 2837–2848. https://doi.org/10.1109/TASE.2022.3151607
- Самойлов В.А., Доенко Д.В. Возможность применения нейронных сетей для поиска и решения потенциальных конфликтных ситуаций между воздушными судами при полетах в верхнем воздушном пространстве / Транспорт России: проблемы и перспективы – 2022. Материалы Международной научно-практической конференции. Институт проблем транспорта им. Н.С. Соломенко РАН. СанктПетербург. 2022. С. 180–184.
- Wang Z., Liang M., Delahaye D. Data-driven Conflict Detection Enhancement in 3D Airspace with Machine Learning // 2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT). Singapore. 2020. https://doi.org/10.1109/AIDA-AT48540.2020.904.9180
- Pinto Neto E.C., Baum D., Almeida J.R., et. al. Deep Learning in Air Traffic Management (ATM): Applications, Opportunities, and Open Challenges // Aerospace 2023. V. 10. No. 4. https://doi.org/10.3390/aerospace10040358
- Razzaghi P., Tabrizian A., Guo W., et. al. A Survey on Reinforcement Learning in Aviation Applications // Engineering Applications of Artificial Intelligence. 2024. V. 136. No. 3. https://doi.org/10.1016/j.engappai.2024.108911
- Кулида Е.Л., Лебедев В.Г. Методы решения задач планирования и регулирования потоков воздушного движения Ч. 2. // Проблемы управления. 2023. № 2. С. 3–18. https://doi.org/10.25728/pu.2023.2.2
- Brittain M.W., Wei P. One to Any: Distributed Conflict Resolution with Deep Multi-agent Reinforcement Learning and Long Short-term Memory // AIAA Scitech 2021 Forum. Nashville, Tennessee, USA. https://doi.org/10.2514/6.2021-1952
- Wang Z., Pan W., Li H., et. al. Review of Deep Reinforcement Learning Approaches for Conflict Resolution in Air Traffic Control // Aerospace. 2022. V. 9. No. 6. https://doi.org/10.3390/aerospace9060294
- Groot J., Ribeiro M., Ellerbroek J., et. al. Improving Safety of Vertical Manoeuvres in a Layered Airspace with Deep Reinforcement Learning // International Conference on Research in Air Transportation (ICRAT). Tampa, Florida, USA. 2022. P. 19–23.
- Ribeiro M., Ellerbroek J., Hoekstra J. Review of Conflict Resolution Methods for Manned and Unmanned Aviation // Aerospace. 2020. V. 7. No. 6. https://doi.org/10.3390/aerospace7060079
- Ribeiro M., Ellerbroek J., Hoekstra J. Distributed Conflict Resolution at High Traffic Densities with Reinforcement Learning // Aerospace. 2022. V. 9. No. 9. https://doi.org/10.3390/aerospace9090472
- Ribeiro M. Conflict Resolution at High Traffic Densities with Reinforcement Learning // Thesis for PhD. 2023. https://doi.org/10.4233/uuid:a2979919-cb01-41d1-bbba-fefa9079463b
- Ribeiro M., Ellerbroek J., Hoekstra J. Improving Algorithm Conflict Resolution Manoeuvres with Reinforcement Learning // Aerospace. 2022. V. 9. No. 12. https://doi.org/10.3390/aerospace9120847
- Визильтер Ю.В., Вишняков Б.В., Желтов С.Ю. Современные технологии искусственного интеллекта и их применение в авиационных комплексах // XVI Всероссийская мультиконференция по проблемам управления (МКПУ– 2023). Волгоград. Материалы мультиконференции в 4 т. Т. 3. С. 13–16.
- Sui D., Ma C., Wei C. Tactical Conflict Solver Assisting Air Traffic Controllers Using Deep Reinforcement Learning // Aerospace. 2023. V. 10. No. 2.https://doi.org/10.3390/aerospace10020182
- Bastas A., Vouros G. Data-Driven Modeling of Air Traffic Controllers’ Policy to Resolve Conflicts // Aerospace. 2023. V. 10. No. 6.https://doi.org/10.3390/aerospace10060557
- Кулида Е.Л., Лебедев В.Г. Проблемы при применении методов машинного обучения в авиации // Труды 16-й Международной конференции «Управление развитием крупномасштабных систем» (MLSD’2023, Москва). М.: ИПУ РАН, 2023. С. 1315–1320. https://doi.org/10.25728/mlsd.2023.1315
- Degas A., Islam M.R., Hurter C., et. al. A Survey on Artificial Intelligence (AI) and eXplainable AI in Air Traffic Management: Current Trends and Development with Future Research Trajectory // Appl. Sci. 2022. V. 12. Iss. 3.https://doi.org/10.3390/app12031295
- Wang L., Yang H., Lin Y., et. al. Enhancing Air Traffic Control: A Transparent Deep Reinforcement Learning Framework for Autonomous Conflict Resolution // Expert Systems with Applications. 2024. V. 260(2). https://doi.org/10.06/j.eswa.2024.125389
- Саттон Р.С., Барто Э.Г. Обучение с подкреплением. М.: ДМК-Пресс, 2020.
- Грессер Л., Кенг В.Л. Глубокое обучение с подкреплением: теория и практика на языке Python. СПб.: Питер, 2022.
- Моралес М. Грокаем глубокое обучение с подкреплением. СПб.: Питер, 2023.
- Sui D., Ma C., Dong J. Conflict Resolution Strategy Based on Deep Reinforcement Learning for Air Traffic Management // Aviation. 2023. V. 27. Iss. 3. P. 177–186. https://doi.org/10.3846/aviation.2023.19720
- Hasselt H.V. Double q-learning // 24th Annual Conference on Neural Information Processing Systems. Vancouver, Canada. 2010. P. 2613–2621.
- Brittain M., Wei P. Autonomous Aircraft Sequencing and Separation with Hierarchical Deep Reinforcement Learning // International Conference for Research in Air Transportation. Castelidefeil, Spain. 2018.
- Mollinga J., Hoof H. An Autonomous Free Airspace En-route Controller Using Deep Reinforcement Learning Techniques // 9th International Conference on Research in Air Transportation (ICRAT). Tampa, Florida, USA. 2020.
- Sui D., Xu W., Zhang K. Study on the Resolution of Multi-aircraft Flight Conflicts Based on an IDQN // Chin. J. Aeronaut. 2021. V. 35. No. 11. P. 195–213.https://doi.org/10.06/j.cja.2021.03.015
- Li S., Egorov M., Kochenderfer M.J. Optimizing Collision Avoidance in Dense Airspace Using Deep Reinforcement Learning // Proceedings of the 13th USA/Europe Air Traffic Management Research and Development Seminar. Vienna, Austria. 17–21 June 2019. https://doi.org/10.48550/arXiv.1912.10146
- Hermans M.C. Towards Explainable Automation for Air Traffic Control Using Deep Q-Learning from Demonstrations and Reward Decomposition. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, May 2020.
- Pham D.-T., Tran N.P., Goh S.K., et. al. Reinforcement Learning for Two-aircraft Conflict Resolution in the Presence of Uncertainty // IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF). Singapore. 2019. https://doi.org/10.1109/RIVF.2019.8713624
- Wang Z., Li H., Wang J., et. al. Deep Reinforcement Learning Based Conflict Detection and Resolution in Air Traffic Control // IET Intelligent Transport Systems. 2019. V. 13. Iss. 6. P. 1041–1047. https://doi.org/10.1049/iet-its.2018.5357
- Badea C.A., Groot J., Morfin Veytia A., et. al. Lateral and Vertical Air Traffic Control Under Uncertainty Using Reinforcement Learning // Proceedings of the 12th SESAR Innovation Days. Budapest, Hungary. 2022.
- Pham D., Tran N., Alam S., et. al. A Machine Learning Approach for Conflict Resolution in Dense Traffic Scenarios with Uncertainties // 13th USA/Europe Air Traffic Management Research and Development Seminar. Vienne, Austria. Jun. 2019.
- Wen H., Li H., Wang Z. Application of DDPG-based Collision Avoidance Algorithm in Air Traffic Control // 12nd International Symposium on Computational Intelligence and Design. Hangzhou, China. 2019. P. 130–133.https://doi.org/10.1109/ISCID.2019.00036
- Pham D.-T., Tran P.N., Alam S., et. al. Deep Reinforcement Learning Based Path Stretch Vector Resolution in Dense Traffic with Uncertainties // Transportation Research, Part C. 2022. V. 135. No. 3. https://doi.org/10.1016/j.trc.2021.103463
- Mukherjee A., Guleria Y., Alam S. Deep Reinforcement Learning for Air Traffic Conflict Resolution Under Traffic Uncertainties // 41st Digital Avionics Systems Conference (DASC). Portsmouth, USA. 2022.https://doi.org/10.1109/DASC55683.2022.9925772
- Sunil E., Ellerbroek J., Hoekstra J.M. Camda: Capacity Assessment Method for Decentralized Air Traffic Control // International Conference on Research in Air Transportation (ICRAT). Barcelona, Spain. 2018. P. 26–29.
- Dudoit A., Rimsa V., Bogdevicius M. Investigation of Aircraft Conflict Resolution Trajectories under Uncertainties // Sensors. 2024. V. 24. No. 18.https://doi.org/10.3390/s24185877
- Busoniu L., Babuska R., De Schutter B. A Comprehensive Survey of Multi-agent Reinforcement Learning // IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2008. V. 38. No. 2. P. 156–172.https://doi.org/10.1109/TSMCC.2007.913919
- Tan M. Multi-agent Reinforcement Learning: Independent vs. Cooperative Agents // 10th International Conference on Machine Learning (ICML). 1993. P. 330–337. https://doi.org/10.1016/B978-1-55860-307-3.50049-6
- Matignon L., Laurent G.J., Le Fort-Piat N. Independent Reinforcement Learners in Cooperative Markov Games: a Survey Regarding Coordination Problems // Knowledge Engineering Review. 2012. V. 27. No. 1.https://doi.org/10.1017/S0269888912000057
- Everett M., Chen Y.F., How J.P. Motion Planning Among Dynamic, Decisionmaking Agents with Deep Reinforcement Learning // IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018. P. 3052–3059.https://doi.org/10.48550/arXiv.1805.01956
- Chen. Y., Hu M., Yang L., et. al. General Multi-agent Reinforcement Learning Integrating Adaptive Manoeuvre Strategy for Real-time Multi-aircraft Conflict Resolution // Transportation Research. Part C. Emerging Technologies. 2023. V. 151. https://doi.org/10.1016/j.trc.2023.104125
- Xu Q., Chen Z., Li F., et. al. An Efficient Aircraft Conflict Detection and Resolution Method Based on an Improved Reinforcement Learning Framework // Int. J. Aerospac. Engin. 2023. V. 1. P. 1–16. https://doi.org/10.1155/2023/6643903
- Ghosh S., Laguna S., Lim S.H., et. al. A Deep Ensemble Method for Multi-agent Reinforcement Learning: A Case Study on Air Traffic Control // 31st International Conference on Automated Planning and Scheduling. SuiGuangzhou, China. 2021. P. 468–476. https://doi.org/10.1609/icaps.v31i1.15993
- Chen Y., Xu Y., Yang L., et. al. General real-time three-dimensional multi-aircraft conflict resolution method using multi-agent reinforcement learning // Transportation Research. Part C. Emerging Technologies. V. 157.https://doi.org/10.1016/j.trc.2023.104367
- Hessel M., Modayil J., Van Hasselt H., et. al. Rainbow: Combining Improvements in Deep Reinforcement Learning // Thirty-Second AAAI Conference on Artificial Intelligence. 2018. V. 32. No. 3. https://doi.org/10.1609/aaai.v32i1.11796
- Nilsson J., Unger J., Eilertsen G. Self-Prioritizing Multi-Agent Reinforcement Learning for Conflict Resolution in Air Traffic Control with Limited Instructions // Aerospace. 2025. V. 12. No. 2. https://doi.org/10.3390/aerospace12020088
- Sui D., Zhou Z., Cui X. Priority-based Intelligent Resolution Method of Multiaircraft Flight Conflicts // Aeronaut. J. 2024. V. 129. P. 326–350.https://doi.org/10.1017/aer.2024.75
- Zhao P., Liu Y. Physics Informed Deep Reinforcement Learning for Aircraft Conflict Resolution // IEEE Transactions on Intelligent Transportation Systems. 2021. V. 23. No. 7. P. 8288–8301.
- Hochreiter S., Schmidhuber J. Long Short-Term Memory // Neural Computation. 1997. V. 9. No. 8. P. 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Cho K., Merrienboer B., Gulcehre C., et. al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation // Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar. 2014. P. 1724–1734. https://doi.org/10.3115/v1/D14-1179
- Brittain M.W., Yang X., Wei P. Autonomous Separation Assurance with Deep Multi-agent Reinforcement Learning // J. Aerospac. Inform. Syst. 2021. V. 18. No. 12. P. 890–905. https://doi.org/10.254/1.1010973
- Hoekstra J.M., Ellerbroek J. BlueSky ATC Simulator Project: an Open Data and Open Source Approach // 7th International Conference on Research in Air Transportation. Philadelphia, USA. 2016. V. 131. P. 132.
- Schulman J., Wolski F., Dhariwal P., et. al. Proximal Policy Optimization Algorithms // ArXiv. 2017. https://doi.org/10.48550/arXiv.1707.06347
- Vaswani A., Shazeer N., Parmar N., et. al. Attention is All You Need // 31st Conference on Neural Information Processing Systems (NIPS). Long Beach, USA. 2017. https://doi.org/10.48550/arXiv.1706.03762
- Dalmau R., Allard E. Air Traffic Control Using Message Passing Neural Networks and Multi-agent Reinforcement Learning // Conference: SESAR Innovation Days (SID), Virtual Event. 2020. P. 7–10.
- Groot J., Ellerbroek J., Hoekstra J. Using Relative State Transformer Models for Multi-Agent Reinforcement Learning in Air Traffic Control // Conference: SESAR Innovation days (SID). Seville, Spain. 2023.
- Wollkind S., Valasek J., Ioerger T. Automated Conflict Resolution for Air Traffic Management Using Cooperative Multi-agent Negotiation // AIAA Guidance, Navigation, and Control Conference and Exhibit. 2004.https://doi.org/10.2514/6.2004-4992
- Pritchett R., Genton A. Negotiated Decentralized Aircraft Conflict Resolution // IEEE Transactions on Intelligent Transportation Systems. 2017. V. 19. No. 1. P. 81–91. https://doi.org/10.1109/TITS.2017.2693820
- Lai J., Cai K., Liu Z., et. al. A Multi-agent Reinforcement Learning Approach for Conflict Resolution in Dense Traffic Scenarios // IEEE/AIAA 40th Digital Avionics Systems Conference (DASC). San Antonio, USA. 2021.https://doi.org/10.1109/DASC52595.2021.9594437
- Wu Z., Pan S., Chen F., et. al. A comprehensive Survey on Graph Neural Networks // 2019. https://doi.org/10.48550/arXiv.1901.00596
- Mendonca M., Ziviani A., Barreto A. Graph-Based Skill Acquisition for Reinforcement Learning // ACM Computing Surveys (CSUR). 2019. V. 52. No. 1.https://doi.org/10.1145/3291045
- Papadopoulos G., Bastas A., Vouros G.A., et. al. Deep Reinforcement Learning in Service of Air Traffic Controllers to Resolve Tactical Conflicts // Expert Systems with Applications. 2024. V. 236. No. 1. https://doi.org/10.1016/j.eswa.2023.121234
- Isufaj R., Aranega Sebastia D., Piera M.A. Toward Conflict Resolution with Deep Multi-agent Reinforcement Learning // J. Air Transport. 2022. V. 30. No. 3. P. 71–80. https://doi.org/10.2514/1.DO296
- Vouros G., Papadopoulos G., Bastas A., et. al. Automating the Resolution of Flight Conflicts: Deep Reinforcement Learning in Service of Air Traffic Controllers // PAIS 2022. P. 72–85. https://doi.org/10.48550/arXiv.2206.07403
- Kipf T.N., Welling M. Semi-supervised Classification with Graph Convolutional Networks // 2017. https://doi.org/10.48550/arXiv.1609.02907
- Velickovic P., Cucurull G., Casanova A., et. al. Graph Attention Networks // 2018. https://doi.org/10.48.550/arXiv.170.0903
- Zhang Y., Xu S., Zhang L., et. al. Short-term Multi-step-ahead Sector-Based Traffic Flow Prediction Based on the Attention-enhanced Graph Convolutional LSTM Network (AGC-LSTM) // Neural Computing and Applications. 2024. https://doi.org/10.1007/s00521-024-09827-3
- Li Y., Zhang Y., Guo T., et. al. Graph Reinforcement Learning for Multi-Aircraft Conflict Resolution // IEEE Transactions on Intelligent Vehicles. 2024. https://doi.org/10.1109/TIV.2024.3364652
- Ribeiro M., Tseremoglou I., Santos B. Certification of Reinforcement Learning Applications for Air Transport Operations Based on Criticality and Autonomy // AIAA Science and Technology Forum and Exposition. Orlando, Florida, USA. 2024. https://doi.org/10.2514/6.2024-1463
Дополнительные файлы
