Charge transfer complexes based on hexafluorophosphate 2,4_diethyl-9_oxo-10- (4–heptyloxyphenyl) – 9N-thioxanthenonium and thiazole derivatives as photoinitiators of holographic free-radical photopolymerisation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A photoinitiating system based on a charge transfer complex (CTC) between a cationic sulfonium salt derivative synthesised on the basis of thioxanthene-9one and heterocyclic nitrogen- and sulphur-containing donor compounds of thiazole derivatives has been developed. It was found that the absorption bands of the formed CTCs lie in the blue region of the visible spectrum, and the presence of the phenolic ring in conjugation with the thiazole fragment leads to a hyperchromic effect in the absorption spectrum of the complexes. The molecular composition 1: 1 of CTC was confirmed by using the isomolar series method. The modified Benesi–Hildebrand equation was used to calculate the complexation constant (Kas (278 K) = 48.1 l / mol). Using the Vant Hoff equation, thermodynamic parameters were calculated: enthalpy (ΔH = –11.5kJ / mol), entropy (ΔS° = –9.3 J / mol∙K) and Gibbs energy (ΔG° = –8.95 kJ / mol). According to the negative enthalpy change, the reaction of CTC formation is an exothermic process. The formed complexes possess photosensitivity in the spectral region of the charge transfer band (400-500nm), which allows to use them as sensitizers of holographic photopolymer materials for recording holograms by laser radiation λ = 457nm with high diffraction efficiency ≈75 %.

Texto integral

Acesso é fechado

Sobre autores

D. Derevyanko

Vorozhtsov Novosibirsk Institute of Organic Chemistry; Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: Derevyanko@nioch.nsc.ru
Rússia, Novosibirsk; Novosibirsk

V. Shelkovnikov

Vorozhtsov Novosibirsk Institute of Organic Chemistry; Novosibirsk State Technical University

Email: Derevyanko@nioch.nsc.ru
Rússia, Novosibirsk; Novosibirsk

V. Kovalskii

Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences

Email: Derevyanko@nioch.nsc.ru
Rússia, Novosibirsk

Bibliografia

  1. Ibrahim-Ouali M., Dumur F. // European Polymer Journal. 2021. 158. p. 110688.
  2. Kolyakina E.V., Alyeva A.B., Sazonova E.V., Zakharychev E.A., Grishin D.F. // High molecular weight compounds (Series B). 2020. V. 62. № 4. P. 253
  3. Tomal W., Ortyl J. // Polymers. 2020. V. 12. № 5. P. 1073
  4. Nekipelova T.D., Khodot E.N., Deeva Y.S., Levina I.I., Timokhina E.N. Kostyukov A.A., Kuzmin V.A. // Dyes and Pigments. 2021. V. 195. p. 109675
  5. Egorov A.E., Kostyukov A.A., Shcherbakov D.A., Kolymagin D.A., Chubich D.A., Matital R.P. et al. // Polymers. 2023. V. 15. № 1. p. 15010071.
  6. Handique A., Jyoti B., Swapan S., Dolui K. // J. Polym. Sci., Part A: Polym. Chem. 2019. V. 61. № 5. p. 577.
  7. Li J., Wang L., Dai L., Zhong L., Liu B., Ren J., Xu Y. // J. Mater. Sci. 2018. V. 53, p. 1874.
  8. Estrina G.A., Gur’eva L. L., Komarov B.A., Bogdanova L.M., Kurochkin S.A., Estrin Y.I. // Polymer Science, Series B. 2018. V. 60. № 1. p. 1.
  9. Guo B., Wang M., Zhang D., Sun M., Bi Y., Zhao Y. //ACS Appl. Mater. Interfaces. 2023. V. 15. № 20. p. 24827.
  10. Zhu Y., Xu D., Zhang Y., Zhou Y., Yagci Y., Liu R. // Angew. Chem. Int. Ed. 2021. V. 60. p. 16917.
  11. Garra P., Dietlin C., Morlet-Savary F., Dumur F., Gigmes D., Fouassier J., Lalevée J. // Progress in Polymer Science. 2019. V. 94. № 1. p. 33.
  12. Toba Y., Usui Y., Konishi T., Ito O., Uesugi T. //Macromolecules. 1999. V. 32. № 20. P. 6545.
  13. Chen M., Zhong M., Johnson J. // Chem. Rev., 2016. V. 116 № 17. P. 10167.
  14. Gong H., Bickham B.P., Woolley A.T., Nordin G.P. // Lab. Chip. 2017. V. 17. P. 2899.
  15. Wu Q., Wang X., Xiong Y., Yang J., Tang H. //RSC AdV. 2016. V. 6. P. 66098.
  16. Huang T.–L., Chen Y.–C. // Polymers. V. 13. № 11. P. 13111801.
  17. Ibrahim-Ouali M., Dumur F. // European Polymer Journal. 2021. V. 158. P. 110688.
  18. Lin J.–T., Lalevee J., Cheng D.–C. // Polymers. 2021. V. 13. № 14. P. 2325.
  19. Konoshenko P.E., Mikerin S.L., Korolkov V.P. // Avtometriia. 2022. V. 58. № 6. P. 108 (in Russian)
  20. Balcerak A., Kabatc-Borcz J., Czech Z., Bartkowiak M. // Polymers. 2023. V. 15. № 5. P. 1148.
  21. Derevyanko D., Shelkovnikov V., Kovalskii V., Zilberberg I., Aliev S., Orlova N., Ugozhaev V. // ChemistrySelect. 2020. V. 5. Р. 11939.
  22. Ratajczak H., Orville-Thomas W.J. // Journal of Molecular Structure. 1972. V. 14. I. 2. P. 155.
  23. Wang D., Kaya K., Garra P., Fouassier J.–P., Graff B., Yagci Y., Lalevée J. // Polym. Chem. 2019. V. 10. P. 4690.
  24. Gencoglu T., Graff B., Morlet-Savary F., Lalevée J., Avci D. // ChemistrySelect. 2021. V. 6. P. 5743.
  25. Garra P., Graff B., Morlet-Savary F., Dietlin C., Becht J., Fouassier J., Lalevee J. // Macromolecules. 2018. V. 51. I. 1. P. 57.
  26. Breitung E.M., Shu C.–F., McMahon R. J. // J. Am. Chem. Soc. 2000. V. 122. № 6. Р. 1159.
  27. Zaborova E., Chávez P., Bechara R., Lévêque P., Heiser T., Méryc S., Leclerc N. // Chem. Commun. 2013. V. 49. P. 9938.
  28. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman, J.R. // Gaussian 09. Revision D. 01. Gaussian, Inc., Wallingford CT. 2013. http://www.gaussian.com
  29. Grimme S., Ehrlich S., Goerigk L. // J. Comp. Chem. 2011. V. 32. P. 1456.
  30. Derevyanko D.I., Pen E.F., Shelkovnikov V.V. // Optical Journal. 2023. V. 90. № 5. P. 86 – 92.
  31. Derevyanko D.I., Shelkovnikov V.V., Aliev S.I., Pen E.F. // Optoelectronics. Instrumentation and Data Proc. 2021. V. 57. № 6. Р. 584.
  32. Babin S.A., Vasiliev E.V., Kovalevsky V.I. // Avtometry. 2003. № 2. Р. 57.
  33. Obonga W.O., Omeje E.O., Uzor P.F., Ugwu Acid M.O. // Trop. J. Pharm. Res. 2011. V. 10. I. 6. P. 817.
  34. Benesi H. A., Hildebrand J.H. // J. Am. Chem. Soc. 1949. 71. P. 2703 – 2707.
  35. Garbutt S., Gerrard D.L. // J. C. S. Perkin II. 1971. P. 782 – 786.
  36. Chao Y., Lei L., Ting-Wei M.U., Qing-Xiang G. //Anal. Sci. 2000. V. 16. I. 5. P. 537.
  37. Srivastava K., Srivastava S., Tanweer A.R. // Int. J. Curr. Res. 2014. V. 6. I. 3. P. 5481.
  38. Zulkarnain I. M, Khan A.A., Miyan L., Ahmad M., Azizc N. // J. Mol. Struct., 2017. V. 1141. P. 687.
  39. Abbu V., Nampally V., Baindla N., Tigulla P. // J. Solution Chem. 2019. V. 48. P. 61 – 81.
  40. Gemeiner P. // Chem. Listy. 2011 V. 105. p. 332.
  41. Studer K., Decker C., Beck E., Schwalm R. // Prog. Org. Coat. Ser. 2003. V. 48. P. 92.
  42. Vorzobova N., Sokolov P. // Polymers. 2019. V. 11. P. 2020.
  43. Bruder F.–K., Facke T., Rolle T. // Polymers. 2017. V. 9. № 10. P. 472.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. 1. Structural formulas of SSDETX– hexafluorophosphate 2,4-diethyl-9-oxo-10-(4-heptyloxyphenyl)-9H-thioxanthenonium and thiazole derivatives TZ1– 2-mercapto-4-methyl-5-thiazolacetic acid, TZ2– 4-(2-benzothiazolyldithio)morpholine, TZ3 – 6-ethoxy-2-mercaptobenzothiazole

Baixar (75KB)
3. 2. Absorption spectra of electron donors of thiazole derivatives and their mixtures with SSDETX. Swt[Donors]=3 mg in a mixture in 1 ml of CHCl3. A mixture of ww.% = 50% (3 mg TZs + 3 mg SSDETX) in a mixture of 1 ml CHCl3. The insert shows the absorption spectra of {[TZs+SSDETX]-SSDETX-TZs}

Baixar (135KB)
4. Fig. 3. (a) Boundary molecular orbital energies for optimized TZs and KPZ [TZs-SSDETX], (b) graphical boundary molecular orbital energies for optimized KPZ [TZ2/SSDETX] and modeled transitions in UV–VIS KPZ spectra [TZ2/SSDETX] using the TDDFT method.

Baixar (164KB)
5. 4. Approximated isomolar diagrams for SSDETX systems: TZ3, c = const = [TZ3] + + [SSDETX] = 0.0082 mol l–1, l = 1 cm (λ = 427 nm).

Baixar (53KB)
6. Fig. 5. Change in the absorption spectrum of [TZ3–SSDETX] KP3 as a function of temperature, cSSDETX = 0.0213 mol/L.

Baixar (128KB)
7. Fig. 6. Dependence (mol. ratio SSDETX: TZ3 1:1) (T = 298 K, λ = 473 nm).

Baixar (69KB)
8. 7. Graph of lnKas dependence on 1/T(K).

Baixar (70KB)
9. 8. The dependence of the optical absorption density D at λ = 450 nm on the duration of illumination of the solutions of the control panel: – [TZ2–SSDETX], – [TZ3–SSDETX].

Baixar (107KB)
10. Fig. 9. IR absorption spectrum of GFPM before exposure 1, after exposure 2, after post-exposure heat treatment 3.

Baixar (88KB)
11. 10. Spectral response of the formed reflective hologram before exposure 1, after exposure 2, after post-exposure heat treatment 3. wwt.% = 5% (2 mg TZs + 2 mg SSDETX in 32 mg GFPM).

Baixar (81KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024