Фотокаталитическая окислительная деструкция диклофенака в воде с применением железосодержащих металлокерамических композитов в условиях облучения и озонирования
- Авторы: Макарова В.М.1, Скворцова Л.Н.1, Дычко К.А.1, Крюкова О.Г.2
-
Учреждения:
- Национальный исследовательский Томский государственный университет
- Томский научный центр СО РАН
- Выпуск: Том 99, № 6 (2025)
- Страницы: 952-963
- Раздел: ФОТОХИМИЯ, МАГНЕТОХИМИЯ, МЕХАНОХИМИЯ
- Статья получена: 26.09.2025
- Статья опубликована: 15.06.2025
- URL: https://pediatria.orscience.ru/0044-4537/article/view/691393
- DOI: https://doi.org/10.31857/S0044453725060157
- EDN: https://elibrary.ru/hhvwri
- ID: 691393
Цитировать
Полный текст



Аннотация
Исследована фотокаталитическая активность железосодержащих металлокерамических композитов на основе нитрида кремния в процессе окислительной деградации фармацевтического загрязнителя диклофенака (DCF). Композиты получены при азотировании ферросилиция без добавок и ферросилиция с шунгитом (модификатор для получения SiC) в режиме горения. Отмечено, что использование мочевины позволяет дополнительно модифицировать керамическую матрицу композитов полупроводниковыми фазами (Fe2O3, C3N4), способными поглощать в области ближнего УФ и видимого света. Установлен фазовый состав, изучены морфологические особенности и оптические свойства композитов. Проведена оценка кислотно-основных свойств поверхности. Изучена адсорбционная и каталитическая активность композитов в отсутствие и с добавкой Н2О2 при УФ-облучении (фотохимический процесс Фентона), в условиях озонирования при облучении УФ и видимым светом. Наибольшая степень деградации DCF установлена при совмещении гетерогенного фотокатализа и процесса Фентона (84%) и в условиях фотокаталитического озонирования (88%). Исследована кинетика фотокаталитической деградации DCF с использованием модели псевдо-первого порядка. Определены продукты деградации DCF методом ГХ-МС.
Об авторах
В. М. Макарова
Национальный исследовательский Томский государственный университет
Email: valerym.a.c@yandex.ru
634050, Томск, Россия
Л. Н. Скворцова
Национальный исследовательский Томский государственный университет634050, Томск, Россия
К. А. Дычко
Национальный исследовательский Томский государственный университет634050, Томск, Россия
О. Г. Крюкова
Томский научный центр СО РАН634021, Томск, Россия
Список литературы
- Hernández-Tenorio R., González-Juárez E., Guzmán-Mar J.L. et al. // J. of Hazardous Materials Advances. 2022. V. 8. P. 100172. https://doi.org/10.1016/j.hazadv.2022.100172
- O’Flynn, D., Lawler J., Yusuf A. et al. // Anal. Methods. 2021. V. 13. P. 575. https://doi.org/10.1039/D0AY02098B
- Tiedeken E.J., Tahar A., McHugh B. et al. // Science of The Total Environment. 2017. V. 574 P. 1140. 10.1016/j.scitotenv.2016.09.084' target='_blank'>https://doi: 10.1016/j.scitotenv.2016.09.084
- Fernandes J.P., Almeida C.M.R, Salgado M.A. et al. // Toxics. 2021. V. 9. P. 257. 10.3390/toxics9100257' target='_blank'>https://doi: 10.3390/toxics9100257
- Wilkinson J.L., Boxall A.B.A., Kolpin D.W. et al. // Proceedings of the National Academy of Sciences. 2022. V. 119. № 8. P. 2113947119. 10.1073/pnas.2113947119' target='_blank'>https://doi: 10.1073/pnas.2113947119
- Guillossou R., Le Roux J., Mailler R. et al. // Chemosphere. 2019. V. 218. P. 1050. 10.1016/j.chemosphere.2018.11.182' target='_blank'>https://doi: 10.1016/j.chemosphere.2018.11.182
- Ma D., Yi H., Lai C. et al. // Ibid. 2021. V. 275. P. 130104. https://doi.org/10.1016/j.chemosphere.2021.130104
- Suhag M.H., Khatun A., Tateishi I. et al. // ACS Omega. 2023. V. 8. P. 11824. https://doi.org/10.1021/acsomega.2c06678
- Yu Y., Yan L., Cheng J. et al. // Chemical Engineering Journal. 2017. V. 325 P. 647. https://doi.org/10.1016/j.cej.2017.05.092
- Ershov D.S., Besprozvannykh N.V., Sinel’shchikova O.Y. // Russ J. Inorg. Chem. 2022. V. 67. P. 105. https://doi.org/10.1134/S003602362201003X
- Zhang L., Hao J., Jia Z. et al. // J. Solid State Chem. 2023. V. 325. P. 124167. https://doi.org/10.1016/j.jssc.2023.124167
- Su S., Xing Z., Zhang S. et al. // Appl. Surf. Sci. 2021. V. 537. P. 147890. https://doi.org/10.1016/j.apsusc.2020.147890
- Sonhtag C., Gunten U. Chemistry of Ozone in Water and Wastewater Treatment. [S.l.]: IWA Publishing, 2012. 320 p.
- Li X., Chen W., Tang Y. et al. // Chemosphere. 2018. V. 206. P. 615. https://doi.org/10.1016/j.chemosphere.2018.05.066
- Moreira N.F.F., Sousa J.M., Macedo G. et al. // Water Res. 2016. V. 94. P. 10. https://doi.org/10.1016/j.watres.2016.02.003
- Valério A., Wang J., Tong S. et al. // Chem. Eng. Process. 2020. V. 149. P. 107838. https://doi.org/10.1016/j.cep.2020.107838
- Camera-Roda G., Loddo V., Palmisano L. et al. // Appl. Catal. B: Environ. 2019. V. 253. P. 69. https://doi.org/10.1016/j.apcatb.2019.04.048
- Skvortsova L.N., Kazantseva K.I., Bolgaru K.A. et al. // Rev. and adv. in chem. 2022. V. 12. P. 289. https://doi.org/10.1134/S2634827623700137
- Sathishkumar P., Meena R.A.A., Palanisami T. et al. // Sci. Total Environ. 2020. P. 134057. https://doi.org/10.1016/j.scitotenv.2019.134057
- Simon E., Duffek A., Stahl C. et al. // Environ. Int. 2022. V. 159. P. 107033. https://doi.org/10.1016/j.envint.2021.107033
- Zhu J., Zhang G., Xian G. et al. // Front. Chem. 2019. V. 7. P. 796. https://doi.org/10.3389/fchem.2019.00796
- Vitiello G., Iervolino G., Imparato C. et al. // Sci. Total. Environ. 2021. V. 762. P. 143066. doi: 10.1016/j.scitotenv.2020.143066
- Conte F., Tommasi M., Degreli S.N. et al. // ChemPhotoChem. 2023. V. 8. P. 202300177. https://doi.org/10.1002/cptc.202300177
- Нечипоренко А.П. Донорно-акцепторные свойства поверхности твердофазных систем. Индикаторный метод. СПб.: Лань, 2021. 284 с.
- Bauer J. // Phys. Status Solidi. 1977. V. 39. № 2. P. 411. http://dx.doi.org/10.1002/pssa.2210390205
- Cornell R.M., Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. [S. l.]: Wiley-VCH Verlang GmbH & Co. KGaA, 2003. 664 p.
- Levinshtein M.E., Rumyantsev S.L., Shur M.S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. New York: John Wiley & Sons, 2001. 216 p.
- Pattnaik S.P, Behera A., Martha S. et al. // J. Mater. Sci. 2019. V. 54. P. 5726. 10.1007/s10853-018-03266-x' target='_blank'>https://doi: 10.1007/s10853-018-03266-x
- Oppenlander T. Photochemical purification of water and air. Weinheim: Wiley-VCH, 2007. 368 с.
- Smaali A., Berkani M., Merouane F. et al. // Chemosphere. 2021. V. 266. P. 129158. https://doi.org/10.1016/j.chemosphere.2020.129158
- Bulyga D.V., Evstropiev S.K. // Optics and Spectroscopy. 2022. V. 130. № 9. P. 1176. http://dx.doi.org/10.21883/EOS.2022.09.54839.3617-22
Дополнительные файлы
