CHANGING THE PROPERTIES OF NICKEL-RICH CATHODE MATERIALS UPON CONTACT WITH AMBIENT AIR

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Layered oxides with high nickel content are currently the preferred active cathode materials for lithium-ion batteries. However, it is known that the functional properties of cathode materials decrease when they are stored in air due to surface reactions of the cathode material containing residual lithium ions with moisture and carbon dioxide to form lithium hydroxide and carbonate. At long-term storage of the material in contact with atmosphere concentration of residual lithium compounds on the surface of cathode material particles multiply increases that leads to decrease of the electrode materials capacitive properties, in particular, drop of specific discharge capacity by 25% at current density 0.1 C and by 50% at current density 1 C. New methods of regenerating firing of cathode material stored in contact with air are proposed and it is shown that the addition of additional amounts of LiOH allows achieving the highest capacitive characteristics of regenerated materials.

About the authors

E. A Ivanova

LLC Gipronickel Institute

Email: kamenskiim689@gmail.com
St. Petersburg, Russia

M. A Kamenskii

LLC Gipronickel Institute; Ioffe Institute

Email: kamenskiim689@gmail.com
St. Petersburg, Russia; St. Petersburg, Russia

D. M Bogatyrev

LLC Gipronickel Institute

Email: kamenskiim689@gmail.com
St. Petersburg, Russia

A. A Korzhakov

LLC Gipronickel Institute

Email: kamenskiim689@gmail.com
St. Petersburg, Russia

I. N Kosykh

LLC Gipronickel Institute

Email: kamenskiim689@gmail.com
St. Petersburg, Russia

V. V Pakalnis

LLC Gipronickel Institute

Email: kamenskiim689@gmail.com
St. Petersburg, Russia

S. V Makhov

JSC Kola MMC

Email: kamenskiim689@gmail.com
Monchegorsk, Russia

L. V Mashyanova

LLC Gipronickel Institute

Author for correspondence.
Email: kamenskiim689@gmail.com
St. Petersburg, Russia

References

  1. Liu W., Oh P., Liu X. et al. // Angew. Chem. Int. Ed. 2015. V. 54. № 15. P. 4440. https://doi.org/10.1002/anie.204409262
  2. Chang L., Wei A., Luo S. et al. // Int. J. Energy Res. 2022. V. 46. № 15. P. 23145. https://doi.org/10.1002/er.8618
  3. Tian X., Guo R., Bai Y. et al. // Batteries. 2023. V. 9. № 6. P. 319. https://doi.org/10.3390/batteries9060319
  4. Savina A.A., Abakumov A.M. // Heliyon. 2023. V. 9. № 12. P. E21881. https://doi.org/10.1016/j.heliyon.2023.e21881
  5. Wu Z., Zhang C., Yuan F. et al. // Nano Energy. 2024. V. 126. P. 109620. https://doi.org/10.1016/j.nanoen.2024.109620
  6. Noh H.-J., Your S., Yoon C.S. et al. // J. Power Sources. 2013. V. 233. P. 121. https://doi.org/10.1016/j.jpowsour.2013.01.063
  7. Zhang N., Li J., Li H. et al. // Chem. Mater. 2018. V. 30. № 24. P. 8852. https://doi.org/10.1021/acs.chemmater.8b03827
  8. Davis K., Demopoulos G.P. // Next Energy. 2024. V. 4. P. 100122. https://doi.org/10.1016/j.nxener.2024.100122
  9. Sun Y., Liao J., Zhang H. et al. // J. Power Sources. 2023. V. 563. P. 232774. https://doi.org/10.1016/j.jpowsour.2023.232774
  10. Hausbrand R., Cherkashinin G., Ehrenberg H. et al. // Mater. Sci. Eng. B. 2015. V. 192. P. 3. https://doi.org/10.1016/j.mseb.2014.11.014
  11. Li T., Yuan X.-Z., Zhang L. et al. // Electrochem. Energy Rev. 2020. V. 3. № 1. P. 43. https://doi.org/10.1007/s41918-019-00053-3
  12. Teichert P., Esheu G.G., Jahnke H. et al. // Batteries. 2020. V. 6. № 1. P. 8. https://doi.org/10.3390/batteries6010008
  13. Kim J., Lee H., Cha H. et al. // Adv. Energy Mater. 2018. V. 8. № 6. P. 1702028. https://doi.org/10.1002/aenm.201702028
  14. Bi Y., Wang T., Liu M. et al. // RSC Adv. 2016. V. 6. № 23. P. 19233. https://doi.org/10.1039/C6RA00648E
  15. Myung S.-T., Maglia F., Park K.-J. et al. // ACS Energy Lett. 2017. V. 2. № 1. P. 196. https://doi.org/10.1021/acsenergylett.6b00594
  16. Meatza I., Landa-Medrano I., Sananes-Israel S. et al. // Batteries. 2022. V. 8. № 8. P. 79. https://doi.org/10.3390/batteries8080079
  17. Atalay S., Sheikh M., Mariani A. et al. // J. Power Sources. 2020. V. 478. P. 229026. https://doi.org/10.1016/j.jpowsour.2020.229026
  18. Steklinger J., Metzger M., Beyer H. et al. // J. Electrochem. Soc. 2019. V. 166. № 12. P. A2322. https://doi.org/10.1149/2.0011912jes
  19. Ly C., Li Z., Ren X. et al. // J. Mater. Chem. A. 2021. V. 9. № 7. P. 3995. https://doi.org/10.1039/D0TA10378K
  20. Mohanty D., Kalnaus S., Meisner R.A. et al. // J. Power Sources. 2013. V. 229. P. 239. https://doi.org/10.1016/j.jpowsour.2012.11.144
  21. Cho D.-H., Jo C.-H., Cho W. et al. // J. Electrochem. Soc. 2014. V. 161. № 6. P. A920. https://doi.org/10.1149/2.042406jes
  22. Mayer J.K., Huttner F., Heck C.A. et al. // J. Electrochem. Soc. 2022. V. 169. № 6. P. 060512. https://doi.org/10.1149/1945-7111/ac7358
  23. Zhang W., Yuan C., Zhu J. et al. // Adv. Energy Mater. 2023. V. 13. № 2. P. 2202993. https://doi.org/10.1002/aenm.202202993
  24. Zhang Y.S., Courtier N.E., Zhang Z. et al. // Adv. Energy Mater. 2022. V. 12. № 2. P. 2102233. https://doi.org/10.1002/aenm.202102233
  25. Lee W., Muhammad S., Kim T. et al. // Adv. Energy Mater. 2018. V. 8. № 4. P. 1701788. https://doi.org/10.1002/aenm.201701788
  26. Nuroldayeva G., Adair D., Bakenov Z. et al. // ACS Omega. 2023. V. 8. № 41. P. 37899. https://doi.org/10.1021/acsomega.3c03245

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences