SURFACE DEGRADATION OF CERAMIC MATERIAL BASED ON THE ZrB2-HfB2-SiC SYSTEM UNDER THE INFLUENCE OF A SUBSONIC FLOW OF DISSOCIATED NITROGEN CONTAINING 5 mol. % CO2
- Autores: Simonenko E.P1, Chaplygin A.V2, Lysenkov A.S3, Nagornov I.A1, Lukomskii I.V2, Mokrushin A.S1, Simonenko N.P1, Kolesnikov A.F2, Kuznetsov N.T1
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Ishlinskii Institute of Problems of Mechanics of the Russian Academy of Sciences
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
- Edição: Volume 70, Nº 10 (2025)
- Páginas: 1417-1427
- Seção: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://pediatria.orscience.ru/0044-457X/article/view/697767
- DOI: https://doi.org/10.7868/S3034560X25100191
- ID: 697767
Citar
Texto integral
Resumo
Ultra-high-temperature ceramics based on zirconium and hafnium diborides are of great scientific and technical interest, as they can be very promising, including as components of descent vehicles for space exploration. To study the behavior of these ceramics under the influence of high-speed flows of dissociated gases of complex composition and to determine the effect of modifying the ZrB2-HfB2-SiC system with carbon nanotubes, the process of surface degradation under the influence of a subsonic flow of dissociated nitrogen containing 5 mol. % CO2 was examined. Despite the relatively low CO2 content in the nitrogen plasma, the surface oxidation process dominated the conversion of the initial ZrB2/HfB2 into solid solutions based on monocarbonitrides of these metals. In this case, it was noted that a protective layer of silicate glass does not form on the surface, unlike similar materials under the influence of subsonic flows of dissociated air at temperatures <1750–1800°C.
Palavras-chave
Sobre autores
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
Moscow, Russia
A. Chaplygin
Ishlinskii Institute of Problems of Mechanics of the Russian Academy of Sciences
Email: chaplygin@ipmnet.ru
Moscow, Russia
A. Lysenkov
A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: ep_simonenko@mail.ru
Moscow, Russia
I. Nagornov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
Moscow, Russia
I. Lukomskii
Ishlinskii Institute of Problems of Mechanics of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
Moscow, Russia
A. Mokrushin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
Moscow, Russia
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
Moscow, Russia
A. Kolesnikov
Ishlinskii Institute of Problems of Mechanics of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
Moscow, Russia
N. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: ep_simonenko@mail.ru
Moscow, Russia
Bibliografia
- Simonenko E.P., Sevast’yanov D. V., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 14. P. 1669. https://doi.org/10.1134/S003602361340039
- Squire T.H., Marschall J. // J. Eur. Ceram. Soc. 2010. V. 30. № 11. P. 2239. https://doi.org/10.1016/j.jeurceramsoc.2010.01.026
- Baipai S., Dubey S., Venkateswaran T. et al. // Chem. Eng. J. 2024. V. 495. P. 153387. https://doi.org/10.1016/j.cej.2024.153387
- Parthasarathy T.A., Perry M.D., Ciubiuk M.K. et al. // J. Am. Ceram. Soc. 2013. V. 96. № 3. P. 907. https://doi.org/10.1111/jace.12180
- Zhao K., Ye F., Cheng L. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 16. P. 7241. https://doi.org/10.1016/j.jeurceramsoc.2023.07.046
- Thimmappa S.K., Golla B.R., VV B.P. // Silicon. 2022. V. 14. № 18. P. 12049. https://doi.org/10.1007/s12633-022-01945-8
- Nisar A., Hassan R., Agarwal A. et al. // Ceram. Int. 2022. V. 48. № 7. P. 8852. https://doi.org/10.1016/j.ceramint.2021.12.199
- Meng J., Fang H., Wang H. et al. // Int. J. Appl. Ceram. Technol. 2023. V. 20. № 3. P. 1350. https://doi.org/10.1111/ijac.14336
- Silvestroni L., Savino R., Cecere A. et al. // Compos. Part. A: Appl. Sci. Manuf. 2024. V. 185. P. 108293. https://doi.org/10.1016/j.compositesa.2024.108293
- Ni D., Cheng Y., Zhang J. et al. // J. Adv. Ceram. 2022. V. 11. № 1. P. 1. https://doi.org/10.1007/s40145-021-0550-6
- Mungiguerra S., Cecere A., Savino R. et al. // Corros. Sci. 2021. V. 178. P. 109067. https://doi.org/10.1016/j.corsci.2020.109067
- Sonber J.K., Murthy T.S.R.C., Majundar S. et al. // Mater. Perform. Charact. 2021. V. 10. № 2. P. 20200133. https://doi.org/10.1520/MPC20200133
- Cordeiro J.C., Zuzelski M., Hart J. et al. // Sol. Energy. 2025. V. 286. P. 113148. https://doi.org/10.1016/j.solener.2024.113148
- Barbarossa S., Orrià R., Cao G. et al. // J. Alloys Compd. 2023. V. 935. P. 167965. https://doi.org/10.1016/j.jallcom.2022.167965
- Kumar P.R., Hasan M.A., Dey A. et al. // J. Phys. Chem. C. 2021. V. 125. № 24. P. 13581. https://doi.org/10.1021/acs.jpcc.1c01984
- Paksoy A., Yidurim I.D., Arabi S. et al. // J. Alloys Compd. 2024. V. 983. P. 173749. https://doi.org/10.1016/j.jallcom.2024.173749
- Mahmood D.S.A., Khan A.A., Munot M.A. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2016. V. 146. P. 012002. https://doi.org/10.1088/1757-899X/146/1/012002
- Lonné Q., Glandut N., Lefort P. // J. Eur. Ceram. Soc. 2012. V. 32. № 4. P. 955. https://doi.org/10.1016/j.jeurceramsoc.2011.10.027
- Morris B.A., Povolny S.J., Seidel G.D. et al. // Open Ceram. 2023. V. 15. P. 100382. https://doi.org/10.1016/j.oceram.2023.100382
- Wang S., Chen H., Li Y. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 9. P. 3905. https://doi.org/10.1016/j.jeurceramsoc.2023.02.070
- Kim S.Y., Sesso M.L., Franks G. V. // J. Eur. Ceram. Soc. 2023. V. 43. № 5. P. 1762. https://doi.org/10.1016/j.jeurceramsoc.2022.12.027
- Povolny S.J., Seidel G.D., Tallon C. // Ceram. Int. 2022. V. 48. № 8. P. 11502. https://doi.org/10.1016/j.ceramint.2022.01.006
- Simonenko E.P., Simonenko N.P., Sevastyanov V.G. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 14. P. 1772. https://doi.org/10.1134/S00360236184005X
- Gardini D., Backman L., Kaczmarek P. et al. // Compos. Part. B: Eng. 2024. V. 277. P. 111373. https://doi.org/10.1016/j.compositesb.2024.111373
- Mungiguerra S., Silvestroni L., Savino R. et al. // Corros. Sci. 2022. V. 195. P. 109955. https://doi.org/10.1016/j.corsci.2021.109955
- He L., Wu J., Meng Q. et al. // Mater. Today Commun. 2025. V. 42. P. 111391. https://doi.org/10.1016/j.mtcomm.2024.111391
- Zoli L., Servadei F., Failla S. et al. // J. Adv. Ceram. 2024. V. 13. № 2. P. 207. https://doi.org/10.26599/JAC.2024.9220842
- Chen Y. // Ceram. — Silikaty. 2023. V. 67. № 3. P. 260. https://doi.org/10.13168/cs.2023.0026
- Tripathi S., Bhadauria A., Tiwari A. et al. // Diam. Relat. Mater. 2023. V. 140. P. 110537. https://doi.org/10.1016/j.diamond.2023.110537
- Dubey S., S A., Nisar A. et al. // Scr. Mater. 2022. V. 218. P. 114776. https://doi.org/10.1016/j.scriptamat.2022.114776
- Mehdipour M., Balak Z., Azizieh M. et al. // JOM. 2025. V. 77. № 4. P. 2001. https://doi.org/10.1007/s11837-024-07013-3
- Simonenko E.P., Kolesnikov A.F., Chaplygin A.V. et al. // Int. J. Mol. Sci. 2023. V. 24. № 17. P. 13634. https://doi.org/10.3390/ijms241713634
- Feltrin A.C., De Bona E., Karacasulu L. et al. // J. Eur. Ceram. Soc. 2025. V. 45. № 5. P. 117132. https://doi.org/10.1016/j.jeurceramsoc.2024.117132
- Hoque M.S. Bin, Milich M., Akhanda M.S. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 11. P. 4581. https://doi.org/10.1016/j.jeurceramsoc.2023.03.065
- Cheng Y., Zhou L., Liu J. et al. // J. Am. Ceram. Soc. 2023. V. 106. № 8. P. 4997. https://doi.org/10.1111/jace.19128
- Qin M., Gild J., Hu C. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 15. P. 5037. https://doi.org/10.1016/j.jeurceramsoc.2020.05.040
- Gild J., Zhang Y., Harrington T. et al. // Sci. Rep. 2016. V. 6. № 1. P. 37946. https://doi.org/10.1038/srep37946
- Geraksiev N.S. // J. Phys. Conf. Ser. 2019. V. 1390. № 1. P. 012121. https://doi.org/10.1088/1742-6596/1390/1/012121
- Kekelidze V.D., Matveev V.A., Meshkov I.N. et al. // Phys. Part. Nucl. 2017. V. 48. № 5. P. 727. https://doi.org/10.1134/S1063779617050239
- Sissakian A.N., Kekelidze V.D., Sorin A.S. // Nucl. Phys. A. 2009. V. 827. № 1–4. P. 630c. https://doi.org/10.1016/j.nuclphysa.2009.05.138
- Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2050. https://doi.org/10.1134/S0036023622618606
- Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 9. P. 1405. https://doi.org/10.1134/S00360236226190014X
- Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 1. P. 30. https://doi.org/10.1016/j.jeurceramsoc.2021.09.020
- Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 4. P. 1093. https://doi.org/10.1016/j.jeurceramsoc.2019.11.023
- Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 10. P. 1345. https://doi.org/10.1134/S0036023618100170
- Simonenko E.P., Papynov E.K., Shichalin O.O. et al. // Ceramics. 2024. V. 7. № 4. P. 1566. https://doi.org/10.3390/ceramics7040101
- Simonenko E.P., Simonenko N.P., Chaplygin A.V. et al. // Int. J. Refract. Met. Hard Mater. 2025. V. 130. P. 107139. https://doi.org/10.1016/j.ijrmhm.2025.107139
- Simonenko E.P., Kolesnikov A.F., Chaplygin A.V. et al. // Russ. J. Inorg. Chem. 2024. V. 69. № 4. P. 517. https://doi.org/10.1134/S0036023624600825
- Chaplygin A.V., Simonenko E.P., Kotov M.A. et al. // Plasma. 2024. V. 7. № 2. P. 300. https://doi.org/10.3390/plasma7020017
- Chaplygin A., Simonenko E., Simonenko N. et al. // Int. J. Therm. Sci. 2024. V. 201. P. 109005. https://doi.org/10.1016/j.ijthermalsci.2024.109005
- Kolesnikov A.F., Kuznetsov N.T., Murav'eva T.I. et al. // Fluid Dyn. 2022. V. 57. № 4. P. 513. https://doi.org/10.1134/S0015462822040061
- Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Materials (Basel). 2022. V. 15. № 23. P. 8507. https://doi.org/10.3390/ma15238507
- Simonenko E.P., Chaplygin A.V., Simonenko N.P. et al. // Ceramics. 2025. V. 8. № 2. P. 67. https://doi.org/10.3390/ceramics8020067
- Gilman J.J. // J. Appl. Phys. 1970. V. 41. № 4. P. 1664. https://doi.org/10.1063/1.1659089
- Wong-Ng W., Hubbard C.R. // Powder Diffr. 1987. V. 2. № 04. P. 242. https://doi.org/10.1017/S0885715600012884
- Kawamura T. // Mineral. J. 1965. V. 4. № 5. P. 333. https://doi.org/10.2465/minerj1953.4.333
- Chaplygin A.V., Vasil'evskii S.A., Galkin S.S. et al. // Phys. Kinet. Gas Dyn. 2022. V. 23. № 2. P. 38. https://doi.org/10.33257/PhChGD.23.2.990
- Gordeev A. // VKI, RTO AVT/VKI Spec. Course Meas. Tech. High Enthalpy Plasma Flows 1999. https://apps.dtic.mil/sti/citations/ADP010736
- Bechelany M., Brioude A., Cornu D. et al. // Adv. Funct. Mater. 2007. V. 17. № 6. P. 939. https://doi.org/10.1002/adfm.200600816
- Quintard P.E., Barberis P., Mirgorodsky A.P. et al. // J. Am. Ceram. Soc. 2002. V. 85. № 7. P. 1745. https://doi.org/10.1111/j.1151-2916.2002.tb00346.x
- Wu R., Zhou B., Li Q. et al. // J. Phys. D. Appl. Phys. 2012. V. 45. № 12. P. 125304. https://doi.org/10.1088/0022-3727/45/12/125304
Arquivos suplementares
