APPLICATION OF SENSING COMPOSITE FILMS “CROSS-LINKED POLYVINYL ALCOHOL—MAGNETITE” FOR THE DIGITAL COLORIMETRIC DETERMINATION OF GLUCOSE AND FRUCTOSE IN HONEY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A new method for the determination of water soluble carbohydrates (glucose and fructose) was developed with use of sensing composite films “cross-linked polyvinyl alcohol—magnetite”. It was proposed to apply the digital colorimetry method as a tool for the registration of film response in RGB space. The water-soluble carbohydrates determination was carried out in phosphate-borate buffer solution at pH value 8.5 and borax concentration 0.05 mol/dm3. It was performed that the most sensitive film was the one impregnated by iron salts solution during 2 minutes before precipitation of Fe3O4 particles. The LOD of glucose and fructose was equal to 11 mmol/dm3. The proposed approach to the determination of glucose and fructose, which does not require special laboratory equipment to measure the analytical response, can serve as an alternative to the photometric ferricyanide method for the determination of glucose and fructose.

About the authors

I. S Shchemelev

Lomonosov Moscow State University

Email: shchemelev_93@mail.ru
Department of Chemistry Moscow, Russia

A. V Ivanov

Lomonosov Moscow State University; Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: shchemelev_93@mail.ru

Department of Chemistry

Moscow, Russia; Moscow, Russia

N. B Ferapontov

Lomonosov Moscow State University

Author for correspondence.
Email: shchemelev_93@mail.ru

Department of Chemistry

Moscow, Russia

References

  1. Miri M.G., Khajeh M., Oveisi A.R. et al. // Spectrochim. Acta, A. 2018. V. 205. P. 200. https://doi.org/10.1016/j.saa.2018.07/034
  2. You R., Wang H., Wang Ch. et al. // Food Chem. 2023. V. 427. P. 136692. https://doi.org/10.1016/j.foodchem.2023.136692
  3. Merlo F., Colucci F., De Soricellis G. et al. // Adv. Sample Prep. 2024. V. 9. P. 100103. https://doi.org/10.1016/j.sampre.2024.100103
  4. Amini Sh., Kandeh S.H., Ebrahimzadeh H. et al. // Food Chem. 2023. V. 420. P. 136122. https://doi.org/10.1016/j.foodchem.2023.136122
  5. Alizadeh R., Balajas mashalavi, Faal A.Ye. et al. // Microchem. J. 2021. V. 168. P. 106422. https://doi.org/10.1016/j.microc.2021.106422
  6. Fan Ch., Tang H., Wang L. et al. // New J. Chem. 2020. V. 44. № 27. P. 11704. https://doi.org/10.1039/DONJ01197E
  7. Si T., Lu X., Zhang H. et al. // Anal. Chim. Acta. 2021. V. 1143. P. 181. https://doi.org/10.1016/j.aca.2020.11.053
  8. Si T., Wang Sh., Zhang H. et al. // Anal. Chim. Acta. 2021. V. 1183. P. 338942. https://doi.org/10.1016/j.aca.2021.338942
  9. Gu Yi., Wang Ya., Wu X. et al. // Sens. Actuators, B. 2019. V. 291. P. 293. https://doi.org/10.1016/j.snb.2019.04.092
  10. Devi R., Thakur M., Pundir C.S. // Biosens. Bioelectron. 2011. V. 26. № 8. P. 3420. https://doi.org/10.1016/j.bios.2011.01.014
  11. Sánchez-González J., Tabernero M.J., Bermejo A.M. et al. // Talanta. 2016. V. 147. P. 641. https://doi.org/10.1016/j.talanta.2015.10.034
  12. Sorribes-Soriano A., Esteve-Turrillas A., Armenia S. et al. // J. Chrom. A. 2018. V. 1545. P. 22. https://doi.org/10.1016/j.chroma.2018.02.055
  13. Barzkar M., Ghiasvand A., Safdarian M. // Talanta. 2023. V. 259. P. 124501. https://doi.org/10.1016/j.talanta.2023.124501
  14. Li Q., Zhuo Y., You S. et al. // Microchem. J. 2022. V. 181. P. 107698. https://doi.org/10.1016/j.microc.2022.107698
  15. Melekhin A.O., Tolmacheva V.V., Shubina E.G. et al. // Talanta. 2021. V. 230. P. 123310. https://doi.org/10.1016/j.talanta.2021.123310
  16. Torres-Cartas S., Meseguer-Lloret S., Gómez-Benito C. et al. // Talanta. 2021. V. 224. P. 121806. https://doi.org/10.1016/j.talanta.2020.121806
  17. Meskher H., Belhaouari S.B., Deshmukh K. et al. // J. Electrochem. Soc. 2023. V. 170. № 4. 047502. https://doi.org/10.1149/1945-7111/acc97c
  18. Sun Yu., Hou Ya., Cao T. et al. // Anal. Chem. 2023. V. 95. № 18. P. 7387. https://doi.org/10.1021/acs.analchem.3c1056
  19. Ivanov A.V., Smirnova M.A., Tikhanova O.A. et al. // Theor. Found. Chem. Eng. 2021. V. 55. № 5. P. 1023. https://doi.org/10.1134/S0040579521050067
  20. Shchemelev I.S., Ivanov A.V., Ferapontov N.B. // Molecules. 2024. V. 29. P. 2794. https://doi.org/10.3390/molecules29122794
  21. Shchemelev I.S., Khasanov D.S., Smirnova M.A. et al. // CTA. 2022. V. 9. № 4. P. 20229417. https://doi.org/10.15826/chimtech.2022.9.4.17
  22. Fadrus H., Malý J. // Analyst. 1975. V. 100. № 1193. P. 549. https://doi.org/10.1039/AN9750000549

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences