ATOMIC LAYER DEPOSITION AlMoxOy OF FILMS USING ALUMINUM TRICHLORIDE OR TRIMETHYLALUMINIUM AND QUANTUM CHEMICAL CALCULATIONS OF GROWTH, REDUCTION AND CONVERSION PROCESSES
- Authors: Gadzhimuradov S.G1,2, Etnisheva S.S1, Maksumova A.M1, Suleymanov S.I3, Abdulagatov I.M1,2, Abdulagatov A.I1
-
Affiliations:
- Dagestan State University
- The Institute of Geothermal and Renewable Energy Problems
- Institute of Physics of the Dagestan Federal Research Center of the Russian Academy of Sciences
- Issue: Vol 70, No 10 (2025)
- Pages: 1258-1268
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://pediatria.orscience.ru/0044-457X/article/view/697752
- DOI: https://doi.org/10.7868/S3034560X25100046
- ID: 697752
Cite item
Abstract
A comparative analysis of the surface processes of atomic layer deposition (ALD) of AlMoxOy using H2O, molybdenum (VI) oxydichloride (MoO2Cl2), trimethylaluminium (Al(CH3)3, TMA) or aluminum chloride (AlCl3) was carried out. The difference between AlMoxOy's ALD processes was the use of TMA or AlCl3 as an aluminum precursor. XPS analysis of the deposited films revealed that the molybdenum content was lower than the aluminum content. Molybdenum in the oxidation state of Mo+6 and reduced forms of molybdenum (Mo+5 and Mo+4) were also found in the films; the ratio of the atomic concentration of Mo+6 to Mo+5 and Mo+4 in the case of the TMA process was 0.76 : 1, and in the case of AlCl3 — 6.3 : 1. The replacement of TMA with AlCl3 in the AlMoxOy ALD process has significantly reduced the amount of reduced Mo in films. To evaluate the thermodynamic parameters of film growth reactions, molybdenum reduction, and MoOx to AlOx conversion for ALD using AlCl3 and TMA, quantum chemical calculations using the DFT method were performed. According to the calculated data, AlMoxOy ALD using TMA is more thermodynamically advantageous in comparison with AlCl3 due to the greater reactivity of TMA.
About the authors
S. G Gadzhimuradov
Dagestan State University; The Institute of Geothermal and Renewable Energy Problems
Email: gadjimuradov.sadr1@gmail.com
a branch of the Federal State Budgetary Institution of Science of the United Institute of High Temperatures of the Russian Academy of Sciences Makhachkala, Russia; Makhachkala, Russia
S. S Etnisheva
Dagestan State University
Email: gadjimuradov.sadr1@gmail.com
Makhachkala, Russia
A. M Maksumova
Dagestan State University
Email: gadjimuradov.sadr1@gmail.com
Makhachkala, Russia
S. I Suleymanov
Institute of Physics of the Dagestan Federal Research Center of the Russian Academy of Sciences
Email: gadjimuradov.sadr1@gmail.com
Makhachkala, Russia
I. M Abdulagatov
Dagestan State University; The Institute of Geothermal and Renewable Energy Problems
Email: gadjimuradov.sadr1@gmail.com
a branch of the Federal State Budgetary Institution of Science of the United Institute of High Temperatures of the Russian Academy of Sciences
Makhachkala, Russia; Makhachkala, RussiaA. I Abdulagatov
Dagestan State University
Author for correspondence.
Email: gadjimuradov.sadr1@gmail.com
Makhachkala, Russia
References
- Magkoev T.T., Mustafaeva D.G., Zadlishvili V.B. et al. // Materials. 2022. V. 15. P. 2245. https://doi.org/10.3390/ma15062245
- Харамирова Р.Н., Зайдман Н.М., Плясова Л.М. и др. // Кинетика и катализ. 1973. Т. 14. № 6. С. 1538.
- Haber J. The Role of Molybdenum in Catalysis / London: Climax Molybdenum Co., 1981. 479 p.
- Dondi M., Matteucci F., Baldi G. et al. // Dyes Pigm. 2008. V. 76. № 1. P. 179. https://doi.org/10.1016/j.dyepig.2006.08.021
- Davis B.E., Strandwitz N.C. // IEEE J. Photovolt. 2020. V. 10. № 3. P. 722. https://doi.org/10.1109/jphotov.2020.2973447
- Chowdhury S., Khokhar M.Q., Pham D.Ph. et al. // ECS J. Solid State Sci. Technol. 2022. V. 11. № 1. P. 015004. https://doi.org/10.1149/2162-8777/ac4d83
- Erdemir A.A. // Tribol. Lett. 2000. V. 8. № 2–3. P. 97. https://doi.org/10.1023/A:1019183101329
- Erdemir A.A. // Surf. Coat. Technol. 2005. V. 200. № 5–6. P. 1792. https://doi.org/10.1016/j.surfcoat.2005.08.054
- Matsumoto Y., Shimanouchi R. // Procedia Eng. 2016. V. 148. P. 158. https://doi.org/10.1016/j.proeng.2016.06.507
- Малахова А.А. // Изв. СПбГТИ (ТУ). Т. 1. № 27. С. 14.
- Кольцов С.И., Алесковский В.Б. // Журн. физ. химии. 1968. Т. 42 С. 1210
- Алесковский В.Б. // Журн. прикл. химии. 1974. Т. 47. № 10. С. 2145.
- Алесковский В.Б. Химия надмолекулярных соединений: Учеб. пособие. СПб.: Изд-во С.-Петербургского университета, 1996. 256 с.
- Малахова А.А., Малков А.А., Соснов Е.А. // Журн. неорган. химии. 2024. Т. 69, № 3. С. 294. https://doi.org/10.31857/s0044457x24030046
- Popov G., Mattinen M., Vibervaara A. et al. // J. Vac. Sci. Technol. A. 2025. Vol. 43. № 3. P. 030801. https://doi.org/10.1116/6.0004320
- George S.M. // Chem. Rev. 2010. V. 110. P. 111. https://doi.org/10.1021/cr900056b
- Максумова А.М., Бодалёв Н.С., Сулейманов С.И. и др. // Неорган. материалы. 2023. Т. 59. № 4. С. 384. https://doi.org/10.31857/S0002337X2304005X
- Максумова А.М., Бодалёв Н.С., Абдуласатов Н.М. и др. // Журн. неорган. химии. 2024. Т. 69. С. 110
- Maksumova A.M., Bodalev I.S., Gadzhimuradov S.G. et al. // Russ. J. Appl. Chem. 2024. V. 97. № 7. P. 595. https://doi.org/10.1134/S1070427224070024
- De Castro I.A., Datta R.S., Ou J.Z. et al. // Adv. Mater. 2017. V. 29. № 40. P. 1701619. https://doi.org/10.1002/adma.201701619
- Етмишева С.С., Гаджимурадов С.Г., Максумова А.М. и др. // Тезисы докл. конференции Кузнецовские чтения–2024, Новосибирск. 2024. С. 21.
- Neese F., Wennmohs F., Becker U. et al. // J. Chem. Phys. 2020. V. 152. P. 224108. https://doi.org/10.1063/5.0004608.21
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 1396. https://doi.org/10.1103/PhysRevLett.77.3865
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297. https://doi.org/10.1039/b508541a
- Гаджимурадов С.Г., Сулейманов С.И., Максумова А.М. и др. // Изв. вузов. Химия и хим. технология. 2023. Т. 68. № 3. С. 50. https://doi.org/10.6060/rvkt.20256803.7132
- Дроздов Е.О., Гукова А.Н., Дубровенский С.Д. et al. // Журн. общ. химии. 2016. Т. 86. С. 1551. https://doi.org/10.36807/1998-9849-2022-63-89-35-44
- Baltrusaitis J., Mendoza-Sanchez B., Fernandez V. et al. // Appl. Surf. Sci. 2015. V. 326. P. 151. https://doi.org/10.1016/j.apsusc.2014.11.077
- Choi J.G., Thompson L.T. // Appl. Surf. Sci. 1995. V. 93. № 2. P. 143. https://doi.org/10.1016/0169-4332(95)00317-7
- Clayton C.R., Lu Y.C // Surf. Interface Anal. 1989. V. 14. № 1–2. P. 66.
- Етмишева С.С., Максумова А.М., Гаджимурадов С.Г. и др. // Тезисы докл. XV Конференции молодых ученых по общей и неорганической химии ИОНХ РАН. Москва, 2025 г. С. 109.
- Oh I., Sandoval T.E., Liu T., et al. // J. Am. Chem. Soc. 2022. V. 144. № 26. P. 11757. https://doi.org/10.1021/jacs.2c03752
- Juppo M., Alen P., Riihelä M. et al. // Chem. Vap. Deposition. 2001. V. 7. № 5. P. 211. https://doi.org/10.1002/1521-3862(200109)7:5<211::AID-CVDE211>3.0.CO;2-L
Supplementary files

