SILVER-CONTAINING COLLAGEN-CHITOSAN MATERIALS FOR MEDICAL APPLICATIONS: SYNTHESIS AND STRUCTURE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

New collagen-chitosan materials modified by (containing) Ag nanoparticles promising for creating wound coatings are based on a porous hybrid material obtained from collagen and chitosan in powder and gel forms. The paper presents an original process concept of the hybrid biomaterials formation. Powders of collagen and chitosan polymers previously modified with Ag nanoparticles obtained by metal-vapor synthesis were used for synthesis of the materials. Metal containing powder systems with Ag particles were used as precursors for gels preparation after lyophilization of which porous hybrid materials were obtained. Nanocomposites were studied using XPS, PXRD and SEM/EDX methods. A homogeneous distribution of Ag nanoparticles over the collagen-chitosan composite volume was recorded and the composition and electronic states of the metal in the material were studied.

About the authors

P. R Voloshina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: alexandervasilkov@yandex.ru
Moscow, 119334 Russia

A. S Golub

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: alexandervasilkov@yandex.ru
Moscow, 119334 Russia

A. Yu Pereyaslavtsev

Dukhov Automatics Research Institute

Email: alexandervasilkov@yandex.ru
Moscow, 115304 Russia

K. M Borisov

Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences

Email: alexandervasilkov@yandex.ru
Moscow, 117393 Russia

N. S Melekhina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Author for correspondence.
Email: alexandervasilkov@yandex.ru
Moscow, 119334 Russia

A. Yu Vasil'kov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: alexandervasilkov@yandex.ru
Moscow, 119334 Russia

References

  1. Nogueira L.F.B., Cruz M.A.E., Aguilar G.J. et al. // Int. J. Mol. Sci. 2022. V. 23. № 13. P. 7277. https://doi.org/10.3390/ijms23137277
  2. Martins E., Diogo G.S., Pires R. et al. // Mar. Drugs. 2022. V. 20. № 11. P. 718. https://doi.org/10.3390/md20110718
  3. Li R., Xu Z., Jiang Q. et al. // Regen. Biomater. 2020. V. 7. № 4. P. 371. https://doi.org/10.1093/rb/rbaa008
  4. Gentile P., Mattioli-Belmonte M., Chiono V. et al. // J. Biomed. Mater. Res., Part A. 2012. V. 100. P. 2654. https://doi.org/10.1002/jbm.a.34205
  5. Mathews S., Bhonde R., Gupta P.K. et al. // Biochem. Biophys. Res. Commun. 2011. V. 414. P. 270. https://doi.org/10.1016/j.bbrc.2011.09.071
  6. Barroso T., Viveiros R., Casimiro T. et al. // J. Supercrit. Fluids. 2014. V. 94. P. 102. https://doi.org/10.1016/j.supflu.2014.07.005
  7. Stonkowska A., Kaczmarek B., Gadzala-Kopeiuch R. et al. // J. Drug. Deliv. Sci. Technol. 2016. V. 35. P. 353. https://doi.org/10.1016/j.jddst.2016.09.001
  8. Kaczmarek B., Stonkowska A. // Adv. Polym. Technol. 2018. V. 37. P. 2367. https://doi.org/10.1002/adv.21912
  9. Pallaske F., Pallaske A., Herklotz K. et al. // J. Wound Care. 2018. V. 27. P. 692. https://doi.org/10.12968/jowc.2018.27.10.692
  10. Privar Y., Skatova A., Maiorova M. et al. // Gels. 2024. V. 10. P. 483. https://doi.org/10.3390/gels10070483
  11. Koirala P., Bhattarai P., Srippabom J. et al. // Int. J. Biol. Macromol. 2025. V. 285. P. 138324. https://doi.org/10.1016/j.ijbiomac.2024.138324
  12. Mohandas A., Deepthi S., Biswas R. et al. // Bioact. Mater. 2018. V. 3. P. 267. https://doi.org/10.1016/j.bioactmat.2017.11.003
  13. Das S., Das M.P., Das J. // JPR. 2013. V. 6. № 1. P. 11. https://doi.org/10.1016/j.jopr.2012.11.006
  14. Andonigi M., Heras K.L., Santos-Vizcaino E. et al. // Carbohydr. Polym. 2020. V. 237. P. 116159. https://doi.org/10.1016/j.carbpol.2020.116159
  15. Abdel-Mohsen A.M., Abdel-Rahman R.M., Kubena I. et al. // Carbohydr. Polym. 2020. V. 230. P. 115708. https://doi.org/10.1016/j.carbpol.2019.115708
  16. Franci G., Falanga A., Galdiero S. et al. // Molecules. 2015. V. 20. № 5. P. 8856. https://doi.org/10.3390/molecules20058856
  17. Su H., Chen Y., Jing X. et al. // Adv. Healthc. Mater. 2024. V. 13. № 5. P. 2302868. https://doi.org/10.1002/adhm.202302868
  18. Wu J., Zheng Y., Wen X. et al. // Biomed. Mater. 2014. V. 9. № 3. P. 035005. https://doi.org/10.1088/1748-6041/9/3/035005
  19. Gupta A., Briffa S.M., Swinglee S. et al. // Biomacromolecules. 2020. V. 21. № 5. P. 1802. https://doi.org/10.1021/acs.biomac.9b01724
  20. Vasil'kov A., Tseomashko N., Tretyakova A. et al. // Coatings. 2023. V. 13. № 8. P. 1315. https://doi.org/10.3390/coatings13081315
  21. Rubina M., Shulepina A., Svetogorov R. et al. // Macromol. Symp. 2020. V. 389. № 1. P. 1900067. https://doi.org/10.1002/masy.201900067
  22. Cui L., Gao S., Song X. et al. // RSC Adv. 2018. V. 8. P. 28433. https://doi.org/10.1039/C8RA05526B
  23. Tretyakova A.N., Voloshina P.R., Naumkin A.V. et al. // Mendeleev Commun. 2025. V. 35. № 4. P. 481. https://doi.org/10.71267/mencom.7706
  24. Vasil'kov A.Y., Dovnar R.I., Smotryn S.M. et al. // Antibiotics. 2018. V. 7. № 3. P. 80. https://doi.org/10.3390/antibiotics7030080
  25. Briggs D. Practical Surface Analysis / Wiley: Chichester, New York, Aarau, 1990. 694 p. ISBN 978-0-471-92081-6
  26. Beccat P., da Silva P., Huibam Y. et al. // OGST — Revue d'IFP Energies nouvelles. 1999. V. 54. № 4. P. 487. https://doi.org/10.2516/ogst:1999042
  27. Beamson G., Briggs D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. Wiley, 1992. 306 p. ISBN — 0471935921
  28. Ratner B.D., Hoffman A.S., Schoen F.J. et al. Biomaterials Science: An Introduction to Materials in Medicine. Amsterdam, Boston: Elsevier Academic Press, 2004. 484 p. ISBN 978-0-12-374626-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences