LIQUID-PHASE HYDROGENATION OF STYRENE ON SUPPORTED NICKEL CATALYSTS NI/SIO2 IN AN AQUEOUS MEDIUM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Liquid-phase hydrogenation of styrene at atmospheric pressure in an aqueous medium was studied on a series of supported nickel catalysts Ni/SiO2 with different nickel content (from 6 to 28 wt. %). The effect of textural characteristics of the catalysts and controlled deactivation with sulfide ions on the catalytic activity was studied. It was shown that with decreasing nickel content, dispersion increases, but the area of the active surface of the reduced metal decreases. Partial deactivation was simulated by introducing a controlled amount of Na2S, which made it possible to quantitatively estimate the density and activity of different types of catalytic centers. It was found that for complete deactivation of one Ni atom on the surface, an average of 0.6 to 1.2 S2– anions are required, depending on the morphology of the catalyst. An analysis of the catalyst stability to the catalytic poison was performed based on the TOF and TONдезакт parameters. The obtained results expand the understanding of deactivation mechanisms and can be used in the development of new generation catalysts resistant to the action of sulfur-containing impurities in hydrogenation reactions.

About the authors

T. Yu Osadchaya

Ivanovo State University of Chemistry and Technology

Email: osadchayatyu@gmail.com
Ivanovo, 153000 Russia

A. V Afinevskii

Ivanovo State University of Chemistry and Technology

Email: osadchayatyu@gmail.com
Ivanovo, 153000 Russia

D. A Prozorov

Ivanovo State University of Chemistry and Technology

Email: osadchayatyu@gmail.com
Ivanovo, 153000 Russia

D. V Smirnov

Ivanovo State University of Chemistry and Technology

Author for correspondence.
Email: osadchayatyu@gmail.com
Ivanovo, 153000 Russia

References

  1. Joseph W. // Phys. Sci. Rev. 2016. V. 1. № 1. P. 20150019. https://doi.org/10.1515/psr-2015-0019
  2. Chen B., Dingerdissen U., Krauter J.G.E. et al. // Appl. Cat. A: Gen. 2005. V. 280. № 1. P. 17. https://doi.org/10.1016/j.apcata.2004.08.025
  3. Zaera F. // ACS Cat. 2017. V. 7. № 8. P. 4947. https://doi.org/10.1021/acscatal.7b01368
  4. Лефеева О.В., Невицева М.П. // Изв. вузов. Сер. Химия и хим. технология. 2025. Т. 68. № 5. С. 101. https://doi.org/10.6060 /ivkkt.20256805.7116
  5. Latypova A.R., Lefedova O.V., Filippov D.V., Doluda V.Yu. // Chem. Tech. 2020. V. 63. № 1. P. 86. https://doi.org/10.3390/catal10040375
  6. Ciriminna R., Fidalgo A., Pandarus V. et al. // Chem. Rev. 2013. V. 113. № 8. P. 6592. https://doi.org/10.1021/cr300399c
  7. Pagliaro M. Silica-based materials for advanced chemical applications. London: Royal Society of Chemistry, 2009. 186 p. https://doi.org/10.1039/9781847557162
  8. Peyrov M.H., Rostamikia T., Parsafard N. // Energy&Fuels. 2018. V. 32. № 11. P. 11432. https://doi.org/10.1021/acs.energyfuels.8b02952
  9. Le T.A., Kang J.K., Park E.D. // Appl. Catal., A: Gen. 2019. V. 581. P. 67. https://doi.org/10.1016/j.apcata.2019.05.020
  10. Mohammed M.A., Kaura A. M., Rabo A. S. Energy Transition in the Oil and Gas Industry / Boca Raton: CRC Press, 2025. 622 p.
  11. Hayes G., Laurel M., MacKinnon et al. // Chem. Rev. 2023. V. 123. № 5. P. 2609. https://doi.org/10.1021/acs.chemrev.2c00354
  12. Afinevskii A.V., Prozorov D.A., Knyazev A.V., Osadchaya T.Y. // Chemistry Select. 2020. V. 5. № 3. P. 1007. https://doi.org/10.1002/slct.201903608
  13. Bartholomew C.H. //Appl. Catal., A: Gen. 2001. V. 212. № 1. P. 17. https://doi.org/10.1016/S0926-860X(00)00843-7
  14. Прозоров Д.А., Лукин М.В. // Вестн. Тв. гос. ун-та. Сер. Химия. 2013. № 15. С. 168.
  15. Андерсон Д.Р. Структура металлических катализаторов / Мир, Москва, 1978. 485 с.
  16. Zhao A. // Cat. Com. 2012. V. 17. P. 34. https://doi.org/10.1016/j.catcom.2011.10.010
  17. Прозоров Д.А., Афинеевский А.В., Князев А.В. и др. Каталитические свойства и дезактивация склепного никеля в реакциях жидкофазной гидротеизации / Казань, 2018. 316 с. ISBN 978-5-00118-185-9.
  18. Романенко Ю.Е., Афинеевский А.В., Прозоров Д.А. и др. // Кинетика и каталия. 2024. Т. 65. № S3. С. 327. https://doi.org/10.31857/S0453881124030053
  19. Худорожков А.К. Изучение влияния состояния поверхности палладийсодержащих катализаторов на их активность и стабильность в реакции полного окисления метана: Дис. ... канд. хим. наук. Новосибирск, 2017. 121 с.
  20. Bergeret G., Gallegot P. Particle size and dispersion measurements. Handbook of heterogeneous catalysis. Part 3 / New Jersey: Wiley, 2008. V. 2. 738 p. https://doi.org/10.1002/9783527610044.hetcat0038

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences