INFLUENCE OF AACVD TEMPERATURE ON THE MICROSTRUCTURAL AND GAS SENSING PROPERTIES OF ZnO THIN FILMS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Thin films of zinc oxide were obtained by the AACVD method. The variable parameter was the synthesis temperature, which was from 350 to 500°C with a step of 25 degrees. The analysis revealed that ZnO particles have a wurtzite structure with an average crystallite size of 26 ± 4 nm. As a result of the analysis of the morphology of the obtained films, it was shown that in the temperature range from 400–450°C, continuous films with an average particle size of 52 ± 14 nm are formed, and at synthesis temperatures of 350–375°C; 475–500°C, films with a discontinuous island-like morphology with an average size of 51 ± 13 nm are formed. The optical properties of the obtained films were studied, and the estimated values of the band gap were 3.31–3.34 eV. A temperature-dependent mechanism of film formation was proposed. The chemosensory properties were studied at an operating temperature of 150–350°C using a wide range of analyte gases: CO, NH3, H2, CH4, C6H6, ethanol, acetone and NO₂. The thin films showed high sensitivity (4–100 ppm) to volatile oxygen-containing organic compounds (acetone and ethanol) at an operating temperature of 350°C. The effect of humidity on the magnitude and shape of the signal obtained during acetone detection was studied.

Sobre autores

A. Mokrushin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: artyom.nano@gmail.com
Moscow, Russia

S. Dmitrieva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; D.I. Mendeleev Russian University of Chemical Technology

Email: artyom.nano@gmail.com
Moscow, Russia; Moscow, Russia

N. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: artyom.nano@gmail.com
Moscow, Russia

A. Averin

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: artyom.nano@gmail.com
Moscow, Russia

Ph. Gorobtsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: artyom.nano@gmail.com
Moscow, Russia

A. Zvyagina

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: artyom.nano@gmail.com
Moscow, Russia

E. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: artyom.nano@gmail.com
Moscow, Russia

Bibliografia

  1. Özgür Ü., Alivov Y.I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. № 4. P. 1. https://doi.org/10.1063/1.1992666
  2. Xu S., Wang Z.L. // Nano Res. 2011. V. 4. № 11. P. 1013 https://doi.org/10.1007/s12274-011-0160-7
  3. Mukhanov VA., Sokolov P.S., Baranov A.N. et al. // Cryst. Eng. Comm. 2013. V. 15. № 32. P. 6318. https://doi.org/10.1039/c3ce40766g
  4. Lin W., Ding K., Lin Z. et al. // Cryst. Eng. Comm. 2011. V. 13. № 10. P. 3338. https://doi.org/10.1039/c1ce05122a
  5. Tishkevich D.I., Vorobjova A.I., Vinnik D.A. // Solid State Phenom. 2020. V. 299 SSP. P. 100. https://doi.org/10.4028/www.scientific.net/SSP.299.100
  6. Ohta H., Hosono H. // Mater. Today. 2004. V. 7. № 6. P. 42. https://doi.org/10.1016/S1369-7021(04)00288-3
  7. O’Brien S., Nolan M.G., Copuroglu M. et al. // Thin Solid Films. 2010. V. 518. № 16. P. 4515. https://doi.org/10.1016/j.tsf.2009.12.020
  8. Cheng X.L., Zhao H., Huo L.H. et al. // Sens. Actuators, B: Chem. 2004. V. 102. № 2. P. 248. https://doi.org/10.1016/j.spb.2004.04.080
  9. Arshak K., Gaidan I. // Mater. Sci. Eng., B. 2005. V. 118. № 1–3. P. 44.
  10. https://doi.org/10.1016/j.mseb.2004.12.061
  11. Neri G., Bonavita A., Rizzo G. et al. // Sens. Actuators, B: Chem. 2006. V. 114. № 2. P. 687.
  12. https://doi.org/10.1016/j.spb.2005.06.062
  13. Мокрушин А.С., Дмитриева С.А., Нагорнова И.А. и др. // Журн. неорган. химии. 2024. Т. 69. № 12. С. 1872.
  14. https://doi.org/10.31857/S0044457X24120195
  15. Look D.C., Reynolds D.C., Litton C.W. et al. // Appl. Phys. Lett. 2002. V. 81. № 10. P. 1830.
  16. https://doi.org/10.1063/1.1504875
  17. Kolodziejczak-Radzinska A., Jesionowski T. // Materials (Basel). 2014. V. 7. № 4. P. 2833.
  18. https://doi.org/10.3390/mn7042833
  19. Benelmekki M., Erbe A. Nanostructured thin films – background, preparation and relation to the technological revolution of the 21st century, 2019
  20. https://doi.org/10.1016/B978-0-08-102572-7.00001-5
  21. Edinger S., Bansal N., Bauch M. et al. // J. Mater. Sci. 2017. V. 52. № 14. P. 8591.
  22. https://doi.org/10.1007/s10853-017-1084-8
  23. Bedia A., Bedia F.Z., Allierie M. et al. // Energy Procedia. 2015. V. 74. P. 529.
  24. https://doi.org/10.1016/j.egypro.2015.07.740
  25. Bao D., Gu H., Kuang A. // Thin Solid Films. 1998. V. 312. № 1–2. P. 37.
  26. https://doi.org/10.1016/s0040-6090(97)00302-7
  27. Khan M.I., Bhatti K.A., Qindeeel R. et al. // Results Phys. 2017. V. 7. P. 651.
  28. https://doi.org/10.1016/j.rinp.2016.12.029
  29. Ansari A.A., Khan M.A.M., Alhoshan M. et al. // J. Semiconduct. 2012. V. 33. № 4.
  30. https://doi.org/10.1088/1674-4926/33/4/042002
  31. Lee C.H., Choi M.S. // Thin Solid Films. 2016. V. 605. P. 157.
  32. https://doi.org/10.1016/j.tsf.2015.09.050
  33. Tan S.T., Chen B.J., Sun X.W. et al. // J. Appl. Phys. 2005. V. 98. № 1.
  34. https://doi.org/10.1063/1.1940137
  35. Wix G., Viri I., Sagan P. et al. // Nanoscale Res. Lett. 2017. V. 12. № 1. P. 0.
  36. https://doi.org/10.1186/s11671-017-2033-9
  37. Aggarwal R., Zhou H., Jin C. et al. // J. Appl. Phys. 2010. V. 107. № 11. P. 3.
  38. https://doi.org/10.1063/1.3406260
  39. Socol G., Craciun D., Mihailescu I.N. et al. // Thin Solid Films. 2011. V. 520. № 4. P. 1274.
  40. https://doi.org/10.1016/j.tsf.2011.04.196
  41. Liu Y., Lian J. // Appl. Surf. Sci. 2007. V. 253. № 7. P. 3727.
  42. https://doi.org/10.1016/j.apsusc.2006.08.012
  43. Wu T.Y., Huang Y.S., Hu S.Y. et al. // Solid State Commun. 2016. V. 237–238. P. 1.
  44. https://doi.org/10.1016/j.ssc.2016.03.015
  45. Ohgaki T., Kawamura Y., Kuroda T. et al. // Key Eng. Mater. 2003. V. 248. P. 91.
  46. https://doi.org/10.4028/www.scientific.net/kem.248.91
  47. Bhaehu D.S., Sankar G., Parkin I.P. // Chem. Mater. 2012. V. 24. № 24. P. 4704.
  48. https://doi.org/10.1021/cm302913b
  49. Jiamprasertkoon A., Powell M.J., Dixon S.C. et al. // J. Mater. Chem. A. 2018. V. 6. № 26. P. 12682.
  50. https://doi.org/10.1039/c8ta014206
  51. Chen S., Noor N., Parkin I.P. et al. // J. Mater. Chem. A. 2014. V. 2. № 40. P. 17174.
  52. https://doi.org/10.1039/c4ta038887
  53. Мокрушин А.С., Дмитриева С.А., Горбань Ю.М. и др. // Журн. неорган. химии. 2025. Т. 70. № 4. С. 624.
  54. https://doi.org/10.31857/S0044457X2504047
  55. Claros M., Seika M., Jimenez Y.P. et al. // Nanomaterials. 2020. V. 10. № 3. P. 1.
  56. https://doi.org/10.3390/nano10030471
  57. Powell M.J., Potter D.B., Wilson R.L. et al. // Mater. Des. 2017. V. 129. P. 116.
  58. https://doi.org/10.1016/j.matdes.2017.05.017
  59. Vallejos S., Piztrová N., Čechal J. et al. // J. Vis. Exp. 2017. V. 2017. № 127. P. 1.
  60. https://doi.org/10.3791/56127
  61. Ma T. // Mater. Sci. Semiconduct. Process. 2021. V. 121. P. 105413.
  62. https://doi.org/10.1016/j.mssp.2020.105413
  63. Daraz U., Ansari T.M., Arain S.A. et al. // Main Group Met. Chem. 2022. V. 45. № 1. P. 178.
  64. https://doi.org/10.1515/mgnc-2022-0017
  65. Shujah T., Butt A., Ikram M. et al. // Dig. J. Nanometer. Biostructures. 2016. V. 11. № 3. P. 891.
  66. Noh M.F.M., Soh M.F., Teh C.H. et al. // Sol. Energy. 2017. V. 158. P. 474.
  67. https://doi.org/10.1016/j.solencr.2017.09.048
  68. Sánchez-Martín S., Olatzola S.M., Castaño E. et al. // RSC Adv. 2021. V. 11. № 30. P. 18493.
  69. https://doi.org/10.1039/d1ra03251h
  70. Selvaraj B., Balaguru Rayappan J.B., Jayanth Babu K. // Mater. Sci. Semicond. Process. 2020. V. 112. P. 105006. https://doi.org/10.1016/j.mssp.2020.105006
  71. Du H., Yang W., Yi W. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 20. P. 23084. https://doi.org/10.1021/acsami.0603498
  72. Hijri M., Bahanan F., Aida M.S. et al. // J. Inorg. Organomet. Polym. Mater. 2020. V. 30. № 10. P. 4063. https://doi.org/10.1007/s10904-020-01553-2
  73. Мокрушин А.С., Горбань Ю.М., Нагорнова И.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1891. https://doi.org/10.31857/s0044457x22601250
  74. Wang M., Zhu Y., Luo Q. et al. // Appl. Surf. Sci. 2021. V. 566. P. 150750. https://doi.org/10.1016/j.apsusc.2021.150750
  75. Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // J. Alloys Compd. 2024. V. 1009. P. 176856. https://doi.org/10.1016/j.jallcom.2024.176856
  76. Mokrushin A.S., Nagornov I.A., Averin A.A. et al. // Chemosensors. 2023. V. 11. № 2. P. 142. https://doi.org/10.3390/chemosensors11020142
  77. Vallejos S., Pizurova N., Grácia I. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 48. P. 33335. https://doi.org/10.1021/acsami.6612992
  78. Khan A. // J. Pakistan Mater. Soc. 2010. V. 4. № 1. P. 5.
  79. Krysova H., Mansfeldova V., Tarabkova H. et al. // J. Solid State Electrochem. 2024. V. 28. № 8. P. 2531. https://doi.org/10.1007/s10008-023-05766-6
  80. Hou X., Choy K.L. // Chem. Vap. Deposition. 2006. V. 12. № 10. P. 583. https://doi.org/10.1002/cvde.200600033
  81. Choy K.L. // Prog. Mater. Sci. 2003. V. 48. № 2. P. 57. https://doi.org/10.1016/S0079-6425(01)00009-3
  82. Mokrushin A.S., Simonenko T.L., Simonenko N.P. et al. // J. Alloys Compd. 2021. V. 868. https://doi.org/10.1016/j.jallcom.2021.159090
  83. Wongrat E., Chanlek N., Chucalarrom C. et al. // Ceram. Int. 2017. V. 43. № May. P. S557. https://doi.org/10.1016/j.ceramint.2017.05.296
  84. Heiland G., Kohl D. // Physical and Chemical Aspects of Oxidic Semiconductor Gas Sensors, Kodansha Ltd, 1988. https://doi.org/10.1016/b978-0-444-98901-7.50007-5
  85. Hsu C.L., Chang L.F., Hsueh T.J. // Sens. Actuators, B: Chem. 2017. V. 249. P. 265. https://doi.org/10.1016/j.snb.2017.04.083

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025