Журнал прикладной химии

ISSN (print): 0044-4618

Свидетельство о регистрации СМИ: № 0110250 от 09.02.1993

Учредитель: Российская академия наук

Главный редактор: Максимов Антон Львович

Число выпусков в год: 12

Индексация: РИНЦ, перечень ВАК, Ядро РИНЦ, RSCI, CrossRef, Белый список (2 уровень)

Журнал прикладной химии (ЖПХ) основан Отделением прикладной химии РФХО в 1928 г. В состав редакционной коллегии журнала вошли виднейшие ученые того времени: В.Н.Ипатьев, И.А.Каблуков, Е.И.Орлов, В.Е.Тищенко, А.Е.Чичибабин. Обязанности ответственного редактора Журнала прикладной химии были возложены на профессора А.И.Горбова.

Для издания Журнала в 1928 г. было выделено 60 печатных листов, первый выпуск вышел в феврале 1928 г. тиражом 1200 экз. Структура журнала предусматривала публикацию оригинальных статей, работ обзорного характера, рефераты, хронику, библиографию, персоналии, справочные материалы.

С первых лет издания тематика статей была достаточно разнообразной. Наряду с работами технологического характера публиковались актуальные исследования в области аналитической химии, прикладной электрохимии, физико-химического анализа солевых, металлических и других систем.

До 1931 г. Журнал прикладной химии издавался Русским физико-химическим обществом, с 1931 г. — Государственным технико-теоретическим издательством (М., Л.), с 1938 г. журнал перешел в ведение Академии наук СССР. В настоящее время учредителем Журнала прикладной химии является Российская Академия Наук, Институт нефтехимического синтеза РАН, журнал издается под руководством Отделения химии и наук о материалах РАН.

Являясь сегодня единственным в России журналом широкого профиля в области прикладной химии, ЖПХ публикует результаты исследований в различных областях химии и химической технологии в виде статей и обзоров с четко выраженным прикладным характером.

По широте охвата проблем журнал не имеет аналогов среди мировых периодических изданий.

Текущий выпуск

Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Доступ платный или только для подписчиков

Том 98, № 3 (2025)

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Статьи

Целлюлоза и бумага: получение, свойства, применение. Бумажные продукты электротехнического назначения (обзор)
Макаров И.С., Щербак Н.В., Севастьянова Ю.В.
Аннотация

Развитие лесохимии с целью получения новых и замещения уже используемых функциональных материалов продукцией на базе лигноцеллюлозного сырья является важнейшим направлением научно-технического прогресса XXI века. Целлюлозу по праву относят к неисчерпаемому ресурсу с постоянно возобновляемой сырьевой базой. Ее уникальные свойства обеспечиваются системой меж- и внутримолекулярных водородных связей. Данная система ответственна за высокую термическую и химическую стойкость полимера, высокие механические характеристики, сорбционные и другие свойства. Инертность целлюлозы открывает возможности для ее использования в медицине, электронике, космонавтике и др. В данном обзоре рассматриваются вопросы, посвященные эволюции целлюлозы от исходного сырья к готовому продукту — бумаге для электрических компонентов. Основными требованиями, выдвигаемыми к таким бумагам, являются их химическая и термическая стойкость, транспортные свойства — селективность и пропускная способность, внутреннее сопротивление, прочность и т. д. Оптимизация этих свойств возможна за счет как физико-химической модификации целлюлозы, так и создания плотной сетки физических зацеплений между волокнами. Химический состав исходного сырья играет одну из ключевых ролей в формировании будущих свойств получаемой бумаги. Как правило, приветствуется использование целлюлозы с высоким содержанием альфа-фракции, низкой долей лигнина и гемицеллюлозы, пектинов. Металлы и неорганические соединения должны быть полностью исключены из состава используемой целлюлозы. Введение в гидратцеллюлозные волокна натуральных и синтетических волокон позволяет изменять не только механические и транспортные, но и электрические свойства бумаги. Другим перспективным направлением по оптимизации свойств конденсаторных и сепараторных бумаг является создание тонких поверхностных слоев целлюлозной или иной природы.

Журнал прикладной химии. 2025;98(3):176-197
pages 176-197 views

Неорганический синтез и технология неорганических производств

Управление реакционной активностью дисперсного алюминия путем модифицирования оксидами поливалентных металлов (обзор)
Еселевич Д.А., Шевченко В.Г., Красильников В.Н.
Аннотация

В статье представлен обзор решений управления реакционной активностью дисперсных систем на основе металлического Al за счет модификации оксидами поливалентных металлов, введенных путем пропитки порошков алюминия ванадийсодержащими гидро- и сольвогелями, а также растворами формиатов Mn, Fe, Co и Ni, с последующей термообработкой. Использование гелеобразных модификаторов обеспечивает максимальный контакт между компонентами смеси, что исключает возможность изменения морфологии частиц металла и приводит к повышению сыпучести материала. Активация горения Al осуществляется за счет термитного взаимодействия оксидов переходных металлов с алюминием. Показано, что интенсивность окисления обусловлена характером межфазного взаимодействия на поверхности металлических частиц. Предложен механизм окисления модифицированных порошков алюминия, в основе которого потеря защитных свойств оксидной пленки облегчает тепло- и массоперенос в зону химической реакции. Наличие оксидов переходных металлов на поверхности частиц алюминиевых порошков способствует снижению диффузных ограничений и улучшению эксплуатационных свойств Al.

Журнал прикладной химии. 2025;98(3):198-212
pages 198-212 views
Активация интерметаллического соединения TiFe аммиаком
Фокин В.Н., Фурсиков П.В., Фокина Э.Э., Лотоцкий М.В., Дэвидс М.В., Тарасов Б.П.
Аннотация

Интерметаллическое соединение TiFe является одним из классических примеров водород-аккумулирующих материалов. Однако его практическое использование в металлогидридных аккумуляторах водорода затруднено рядом факторов и прежде всего жесткими условиями активации сплава для его последующего гидрирования. Известно несколько способов решения этой задачи. В данной работе исследовано взаимодействие интерметаллида TiFe с аммиаком как гидрирующим агентом под давлением 7.5 атм в присутствии 1–3 мас% NH4Cl как активирующей и катализирующей добавки при температурах 200–300°C с предполагаемым образованием твердого раствора водорода состава TiFeH~0.1, который является эффективным активатором гидрирования интерметаллида TiFe. Установлено, что при использовании разработанных оптимальных условий обработки TiFe аммиаком (добавка 1–3 мас% NH4Cl, температура реакции 200°C и 8-часовая продолжительность) образуются гидридные фазы интерметаллида, которые после вакуумирования при 100–150°С с последующим насыщением водородом под давлением 30 атм при комнатной температуре превращаются в дигидрид TiFeH~2. Экспериментально показано, что предварительно активированный аммиаком и хлоридом аммония TiFe может применяться в системах хранения водорода: после проведения 10-кратного процесса зарядки–разрядки водородоемкость металлогидридного аккумулятора водорода сохраняется.

Журнал прикладной химии. 2025;98(3):213-221
pages 213-221 views

Органический синтез и технология органических производств

Синтез растворимого аддитивного полинорборнена, содержащего в боковой цепи дигидроантраценовые фрагменты
Алентьев Д.А., Зоткин М.А., Бермешев М.В.
Аннотация

Исследована аддитивная сополимеризация норборнена, содержащего фрагмент 9,10-дигидроантрацена, с 5-н-гексилнорборненом в присутствии однокомпонентного катализатора на основе катионного комплекса Pd с N-гетероциклическим карбеновым лигандом. При содержании 5-н-гексилнорборнена от 25 до 75 мол% с выходом до 97% образуются растворимые полимеры со средневесовой молекулярной массой до 1.2·106 и индексом полидисперсности <2. Состав сополимера близок к составу смеси мономеров, а условия сополимеризации практически на него не влияют.

Журнал прикладной химии. 2025;98(3):222-228
pages 222-228 views
Синтез и антикоррозионная активность 3-(5-метил-1,3-диоксан-5-ил)бут-3-ин-2-олов
Султанова Р.М., Важенин Б.В., Борисова Ю.Г., Раскильдина Г.З., Голованов А.А., Злотский С.С.
Аннотация

На основе 5-ацетил-5-метил-1,3-диоксана по реакции Фаворского с ацетиленом и фенилацетиленом синтезированы 3-(5-метил-1,3-диоксан-5-ил)бут-3-ин-2-олы. Установлена возможность существенного торможения коррозии углеродистой стали в горячих растворах соляной кислоты в присутствии этих соединений. Защитный эффект ацетиленовых спиртов, содержащих 1,3-диоксановый фрагмент, усиливается при повышении температуры. Максимальный эффект защиты обеспечивает третичный спирт, содержащий циклоацетальный фрагмент и терминальную СС≡связь. Гомологи данного спирта с дизамещенной тройной связью, а также продукты гидрирования синтезированных ацетиленовых спиртов обладают значительно меньшим защитным эффектом.

Журнал прикладной химии. 2025;98(3):229-236
pages 229-236 views