


Том 98, № 2 (2025)
Неорганический синтез и технология неорганических производств
Получение порошковых материалов термолизом гетерополивольфрамосиликатов
Аннотация
Синтезированы органические производные вольфрамосиликатов состава [(C2H5)4N]4[SiW12O40]∙2H2O, (C6H12N4)3.9Na0.1[SiW12O40]∙7H2O, [(C5H5)2Fe]2H2[SiW12O40]∙H2O и [(C2H5)4N]3Na3[SiW11O39Co(H2O)]× ×15H2O со структурой аниона Кеггина. Их термообработкой на воздухе и в среде инертного газа получены порошки вольфрамосиликатов и композитов на основе WO2 и NaWO3. Соединения и порошковые материалы охарактеризованы методами атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой, электронной и ИК-спектроскопии, рентгенофазового анализа, сканирующей электронной микроскопии, дифференциально-сканирующей калориметрии, измерения сопротивления переменному току и гравиметрического анализа. Установлено, что изменение состава катионов во внешней сфере гетерополивольфрамосиликатов приводит к изменению морфологии частиц получаемых порошков вольфрамосиликатов. Показано, что продукты термолиза, полученные в среде инертного газа, обладают высокой электропроводностью, а вольфрамосиликат ферроцения является катализатором микроволнового синтеза углеродных наноматериалов.



Получение и свойства высокоэнтропийных твердых растворов на основе боридов и силицидов c добавкой карбида кремния
Аннотация
Путем свободного спекания смесей боридов и силицидов, взятых в эквимолярных соотношениях, получены высокоэнтропийные борид и силицид при температурах 2100 и 1750°С соответственно. Оценена спекаемость материалов системы SiC–(Hf0.2Ta0.2Mo0.2W0.2Nb0.2)Si2–(Hf0.2Ta0.2Zr0.2W0.2Nb0.2)B2. Отмечается, что увеличение концентрации высокоэнтропийного силицида в смеси приводит к улучшению уплотнения композитов. Изучены механические свойства полученных составов. Подтверждено, что составы с большим содержанием высокоэнтропийного силицида и борида характеризуются более высокими значениями параметров физико-механических свойств. Подтверждена стабильность высокоэнтропийных фаз в спеченной керамике. Определен диапазон температур плавления полученных материалов, который составляет от 2080 до 2700°С в зависимости от содержания высокоэнтропийного силицида, что позволяет отнести их к классу высокотемпературных.



Приготовление безводных растворов перхлората магния в сульфолане
Аннотация
В работе исследовано влияние условий осушки Mg(ClO4)2 на содержание остаточной воды в соли и в растворах соли в сульфолане. Установлено, что полное удаление кристаллизационной воды из Mg(ClO4)2 происходит при температуре выше 380°C и сопровождается частичным разложением соли. При удалении воды при 150°C в вакууме образуется дигидрат, а при 250°C — моногидрат. Содержание воды в 0.7 M растворе Mg(ClO4)2, полученном путем растворения моногидрата в сульфолане, составило ~9000 ppm. Удаление воды из раствора Mg(ClO4)2 в сульфолане до приемлемых значений (ниже 60 ppm) может быть достигнуто отгонкой азеотропной смеси вода–сульфолан–бензол с последующей дополнительной осушкой раствора металлическим литием.



Отделение редкоземельных металлов от кобальта(II) экстрагентом на основе неодекановой кислоты и диэтилентриамина
Аннотация
Для экстракции редкоземельных металлов и отделения их от кобальта(II) предложен новый реагент, синтезированный простым одностадийным методом термической конденсации диэтилентриамина с неодекановой кислотой и содержащий 30–32 мас% N,N′-(иминодиэтан-2,1-диил)-ди(неононанамид)а, 35–37 мас% 1-(2-неонониламидоэтил)-2-неононил-2-имидазолина и 30–33 мас% непрореагировавшей неодекановой кислоты. Изучена экстракционная способность реагента по отношению к самарию(III) и кобальту(II) в зависимости от кислотности водной фазы (разбавитель — 15 об%-ный раствор н-деканола в толуоле). Определены коэффициенты разделения пар Sm–Co, Pr–Co и Sm–Pr. Показана возможность применения реагента для экстракционного концентрирования редкоземельных металлов и отделения их от кобальта(II).



Наночастицы Gd2O3@@C и Gd2O3@SiO2 как контрастные агенты для магнитно-резонансной томографии
Аннотация
В качестве контрастных агентов для магнитно-резонансной томографии исследованы новые препараты на основе 1–2 нм частиц Gd2O3, нанесенных на малослойные графитовые фрагменты, а также частицы со структурой типа ядро–оболочка составов Gd2O3@SiO2, Gd2O3@C и его поверхностно-окисленный аналог. Изучено влияние строения, размера частиц и природы оболочки, в том числе ее функционализации карбоксильными группами, на время релаксации протонов в молекулах воды. В качестве контрастных агентов сравнения исследованы дисперсии Gd(NO3)3·6H2O и 300–500 нм частицы Gd2O3 в желатине. Показано, что релаксивность исследованных контрастов не является линейной величиной, что связано с изменением координационного окружения Gd3+ при увеличении его концентрации в растворах Gd(NO3)3·6H2O, а в случае Gd2O3@SiO2 и Gd2O3@C — с образованием ассоциатов. При окислении поверхности Gd2O3@C происходит увеличение гидрофильности частиц и уменьшение размера ассоциатов, что приводит к уменьшению релаксивности.



Композиционные материалы
Синтез и свойства пористых углерод-углеродных композитных материалов на основе биоуглей из коры лиственницы и целлюлозы древесины ели
Аннотация
Предложен метод получения пористых углерод-углеродных композитных материалов, основанный на пиролизе при 800°С биоугля из коры лиственницы, пропитанного щелочными растворами целлюлозы из древесины ели. Установлено влияние температуры получения биоугля (400, 600 и 800°С) и содержания растворенной целлюлозы (10 и 20 мас%) на морфологию, пористые характеристики и адсорбционные свойства полученных углерод-углеродных композитов. Наиболее высокую удельную поверхность (568 м2·г–1) и развитую микро-/мезопористую структуру имеет композит, полученный пиролизом образца биоугля из карбонизованной при 400°С коры, пропитанного 20%-ным раствором целлюлозы. По данным метода сканирующей электронной микроскопии, этот композит содержит углеродные волокна, распределенные как по поверхности биоугля, так и в его порах. При использовании биоуглей, полученных при температурах 600 и 800°С, происходит формирование из целлюлозного компонента малопористой углеродной пленки, что снижает удельную поверхность полученного композита. Удельная поверхность углеродных образцов из биоуглей, полученных при 600 и 800°С, с содержанием целлюлозы 20 мас% после пиролиза снижается соответственно до 108 и 54 м2·г–1. Более существенное снижение удельной поверхности до значений 57 и 15 м2·г–1 соответственно наблюдается для этих биоуглей, содержащих 10 мас% целлюлозы. Элементный состав поверхности углеродных композитов и фазовый состав минеральных включений охарактеризованы методами рентгенофазового и рентгенофлуоресцентного анализа. Углерод-углеродные композиты способны адсорбировать краситель метиленовый синий, причем лучшую сорбционную активность проявляет образец на основе биоугля из карбонизованной при 400°С коры, пропитанный 20 мас% раствора целлюлозы (80.6 мг·г–1).



Катализ
Гидрирование продуктов переработки полисахаридов биомассы, содержащих фурановый фрагмент, на палладиевом катализаторе на основе мезопористого алюмосиликата
Аннотация
Синтезирован катализатор на основе мезопористого алюмосиликата Al-MCM-41, содержащий наночастицы палладия. Катализатор исследован в жидкофазном гидрировании фурфурола, 5-гидроксиметилфурфурола и фурфурилового спирта при начальном давлении водорода 5 МПа. Изучено влияние времени реакции, концентрации катализатора, температуры и природы растворителя на конверсию и распределение продуктов гидрирования фурфурола. Установлено, что в водной среде в присутствии Pd/Al-MCM-41 фурфурол превращается преимущественно в тетрагидрофурфуриловый спирт в мягких условиях (100°С, 45 мин) при полной конверсии субстрата. Показано влияние структуры продуктов переработки полисахаридов биомассы, содержащих фурановый фрагмент, на конверсию и селективность процесса гидрирования на катализаторе Pd/Al-MCM-41 в водной среде.



Селективное гидрирование производных фурфурола в присутствии Pd катализатора, нанесенного на гибридный мезопористый носитель
Аннотация
Синтезирован катализатор на основе наночастиц Pd, нанесенных на мезопористый гибридный материал, состоящий из наносферического полимера и алюмосиликата. Катализатор испытан в воднофазном гидрировании фурфурола и 5-гидроксиметилфурфурола при 200°С и давлении водорода 3.0 МПа. Установлено, что катализатор характеризуется высокой селективностью по отношению к образованию циклопентанона (85%) и 3-(гидроксиметил)циклопентанона (81%) и может быть использован в процессе гидрирования фурфурола повторно без потери активности.



Органический синтез и технология органических производств
Химические примеси гексанитрогексаазаизовюрцитана
Аннотация
Обсуждается химический состав примесей высокоэнергетического продукта — гексанитрогексаазаизовюрцитана. Показано, что основными химическими примесями являются промежуточные и побочные продукты стадии нитролиза диформилтетраацетилгексаазаизовюрцитана — ди- и моно- формильные производные нитрогексаазаизовюрцитана (продукты незавершенного нитролиза) и п-нитробензойная кислота. Описано негативное влияние химических примесей: вода и продукты неполного нитролиза препятствуют формированию требуемой ε-полиморфной модификации на этапе кристаллизации, п-нитробензойная кислота снижает термическую стабильность высокоэнергетических составов с гексанитрогексаазаизовюрцитаном. Предлагаются методы контроля качества синтеза промежуточных продуктов, позволяющие избегать загрязнения гексанитрогексаазаизовюрцитана вышеозначенными примесями: качественная проба реакционной массы получения диформилтетраацетилгексаазаизовюрцитана на полноту дебензилирования и количественное определение состава продуктов нитролиза методом высокоэффективной жидкостной хроматографии. Для очистки гексанитрогексаазаизовюрцитана от химических примесей рекомендуются высокотемпературная стабилизация нитроформильных производных в азотной кислоте и водная экстракция натриевой соли п-нитробензойной кислоты.



Потери науки
Академик Владимир Ярославович Шевченко (5.03.1941–14.05.2025)


