SEPARATION OF GAS MIXTURES WITH SIMILAR MOLECULAR WEIGHTS BASED ON THE RADIOMETRIC EFFECT

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Numerical modeling of the separation of a binary gas mixture with similar molecular weights in a thermal micropump based on the radiometric effect is carried out. The simulation method is based on the direct solution of the Boltzmann kinetic equation using a splitting scheme. Relaxation problems are solved using a conservative projection method. Transport equations are solved using first- and second-order schemes. A design of an installation that can be used for separating mixtures of similar masses is proposed. Based on the modeling, an assessment of the efficiency of this device is performed.

作者简介

Ya. Zhikharev

Moscow Institute of Physics and Technology (National Research University); National Research Center "Kurchatov Institute"

Email: zhikharev.yam@phystech.edu
Dolgoprudny, Russia; Moscow, Russia

F. Cheremisin

Federal Research Center "Computer Science and Control" of RAS

Moscow, Russia

Yu. Kloss

Moscow Institute of Physics and Technology (National Research University); National Research Center "Kurchatov Institute"

Dolgoprudny, Russia; Moscow, Russia

参考

  1. Maxwell J.C. On stresses in rarified gases arising from inequalities of temperature // Philosophical Transactions of the Royal Society of London. 1879. V. 170. P. 231–256.
  2. Einstein A. Zur theorie der radiometerkrafte // Zeitschrift fur Physik. 1924. V. 27. P. 1–6.
  3. Crookes W. Researches on the Atomic Weight of Thallium // Philosophical Transations of the Royal Society of London. 1873. V. 163. P. 277–330.
  4. Crookes W.OnAttraction and Repulsion Resulting fromRadiation // Philosophical Transactions of the Royal Society of London. 1874. V. 164. P. 501–527.
  5. Akhlaghi H., Roohi E., Stefanov S.A. Comprehensive review on micro-and nano-scale gas flow effects: slip-jump phenomena, Knudsen paradox, thermally-driven flows, and Knudsen pumps // Physics Reports. 2023. V. 997. P. 1–60.
  6. Nakaye S., Sugimoto H., Gupta N.K., Gianchandani Y.B. Thermally enhanced membrane gas separation // European Journal of Mechanics- B/Fluids 2015. V. 49. P. 36–49.
  7. Pikus A., Sebastiao I., Strongrich A., Alexeenko A.DSMCsimulation of microstructure actuation by Knudsen thermal forces including binary mixtures // AIP Conference Proceedings. 2016. V. 1786. P. 080003.
  8. Matsumoto M., Nakaye S., Sugimoto H. Gas separation by the molecular exchange flow through micropores of the membrane // AIP Conference Proceedings. 2016. V. 1786. P. 080011.
  9. Loftian A., Roohi E. Binary gas mixtures separation using microscale radiometric pumps // International Communications in Heat and Mass Transfer. 2021. V. 121. P. 105061.
  10. Han F., Wang X., Zhao F., Zhang S., Zhang Z. Numerical investigation of gas separation via thermally induced flows in ratchet-like patterned microchannels // International Journal of Thermal Sciences. 2022. V. 172. P. 107280.
  11. Yakunchikov A., Kosyanchuk V. Numerical investigation of gas separation in the system of filaments with different temperatures International // Journal of Heat and Mass Transfer. 2019. V. 138. P. 144–151.
  12. Sugimoto H. Experiment on the gas separation effect of the pump driven by the thermal edge flow // AIP Conference Proceedings. 2008. V. 1084. P. 1123–1128.
  13. Жихарев Я.М., Черемисин Ф.Г., Клосс Ю.Ю. Моделирование разделения смеси газов в многоступенчатом микронасосе, основанное на решении уравнения Больцмана // Компьютерные исследования и моделирование. 2024. Т. 16.№6. С. 1417–1432.
  14. Matsumoto. H., Mihara K., Yamagishi D. Morokuma T. Study on a gas transport system based on thermal induced flow // AIP Conference Proceedings. 2016. V. 1786. No. 1. P. 200002.
  15. Аристов В.В., Черемисин Ф.Г. Расщепление неоднородного кинетического оператора уравнения Больцмана // Докл. АН СССР. 1976. Т. 231.№1. С. 49–52.
  16. Bobylev A.V., Ohwada T. The error of the splitting scheme for solving evolutionary equations // Applied mathematics letters. 2001. V. 14. No. 1. P. 45–48.
  17. Чепмен С., Каулинг Т. Математическая теория неоднородных газов. М.: Изд-во иностр. лит., 1960. 511 с.
  18. Harten A. High resolution schemes for hyperbolic conservation laws // Journal of Computational Physics. 1983. V. 49. No. 3. P. 375–393.
  19. Tcheremissine F.G. Direct numerical solution оf the Boltzmann equation// AIP Conference Proceedings. 2005. V. 672. P. 230005.
  20. Додулад О.И., Черемисин Ф.Г. Расчеты структуры ударной волны в одноатомном газе с контролем точности // Ж. вычисл. матем. и матем. физ. 2013. Т. 53.№6. С. 1008–1026.
  21. Коробов Н.М. Теоретикочисловые методы в приближенном анализе. М.: Физматгиз, 1963. 260 с.
  22. Коган М.Н. Динамика разреженного газа. М.: Наука, 1967. 560 с.
  23. Tcheremissine F.G. Testing and acceleration of the conservative projection method for solving Boltzmann kinetic equation // AIP Conference Proceedings. 2015. V. 1648. P. 230005.
  24. Черемисин Ф.Г., Ускорение решения уравнения Больцмана с помощью контроля величины вкладов в интеграл столкновений // Ж. вычисл. матем. и матем. физ. 2023. Т. 63.№2. С. 2035–2050.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025