ON THE FULFILLMENT OF THE H-THEOREM FOR THE S-MODEL KINETIC EQUATION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The H-function, specifically defined for the S-model kinetic equation, is studied for various physical situations. Spatially homogeneous relaxation is considered. A fairly broad class of initial conditions is investigated. It is shown numerically that the H-theorem is valid for them.

About the authors

V. V Aristov

Federal Research Center "Computer Science and Control" of RAS

Email: aristovvl@yandex.ru
Moscow, Russia

S. A Zabelok

Federal Research Center "Computer Science and Control" of RAS

Moscow, Russia

O. A Rogozin

Federal Research Center "Computer Science and Control" of RAS

Moscow, Russia

References

  1. Силин В.П. Введение в кинетическую теорию газов. М.: ЛИБРОКОМ. 2012. С. 32.
  2. Шахов Е.М. Об обобщении релаксационного уравнения Крука // Изв. АН СССР. Механ. жидкости и газа. 1968. Вып. 5. C. 142–145.
  3. Шахов Е.М. Метод исследования движений разреженного газа. М.: Наука, 1974.
  4. Титарев В.А., Шахов Е.М. Численное исследование сильного нестационарного испарения с поверхности сферы // Ж. вычисл. матем. и матем. физ. 2004. Т. 44.№7. С. 1314–1328.
  5. Valougeorgis D. An analytical solution of the S-model kinetic equations // Z. Angew. Math. Phys. 2003. V. 54. P. 113–124.
  6. Siewert C.E., Sharipov F. Model equations in rarefied gas dynamics: Viscous-slip and thermal-slip coefficients // Phys. Fluids. 2002. V. 14. P. 4123-4129.
  7. Xu K. Direct modeling for computational fluid dynamics: construction and application of unifed gas-kinetic schemes. Singapore: World Scientic, 2015.
  8. Yang L.M., Shu C., Yang W.M., Wu J. An improved three-dimensional implicit discrete velocity method on unstructured meshes for all Knudsen number flows // J. Comput. Phys. 2019. V. 396. P. 738–760.
  9. Bhatnagar P.L., Gross E.P., Krook M. A model for collision processes in gases // Phys. Review. 1954. V. 94. № 3. P. 511–525.
  10. Holway L.H. New statistical models in kinetic theory: methods of construction // Phys. Fluids. 1966. V. 9. P. 1658–1673.
  11. Mieussens L. Convergence of discrete velocity model for the Boltzmann-BGK model // Math. Models Methods Appl. Sci. 2000. V. 10. N. 8. P. 1121—1149.
  12. Коган М.Н. Динамика разреженного газа. М.: Наука, 1967.
  13. Брычков Ю.А., Прудников А.П. Интегральные преобразования обобщенных функций. М.: Наука, 1977.
  14. Husimi K. Some formal properties of the density matrix // Proc. of the Physico-Mathematical Society of Japan. 1940. 3rd Ser. 22.4. P. 264–314.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences