Ультразвуковая томография с применением разреженных матричных антенных решеток и цифровой когерентной обработки с расчетами в частотной области

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

На сегодняшний день актуальной проблемой для промышленной ультразвуковой томографии с применением цифровой когерентной обработки сигналов матричных антенных решеток является повышение скорости получения результатов в форме изображений дефектов в объектах контроля. Одним из подходов, направленных на решение указанной задачи, является применение разреженных матричных АР. В данной работе рассмотрено совместное применение разреженных матричных преобразователей, работающих в раздельном режиме, и алгоритма цифровой когерентной обработки сигналов, который основан на использовании расчетов в частотной области. Этот алгоритм базируется на применении неэквидистантного быстрого преобразования Фурье. Эффективность рассмотренного подхода подтверждается экспериментально.

Об авторах

Д. О Долматов

Национальный исследовательский Томский политехнический университет

Email: dolmatovdo@tpu.ru
Томск, Россия

А. Р Хайруллин

Национальный исследовательский Томский политехнический университет

Email: arh5@tpu.ru
Томск, Россия

В. А Смолянский

Национальный исследовательский Томский политехнический университет

Email: vsmol@tpu.ru
Томск, Россия

Список литературы

  1. Holmes C., Drinkwater B., Wilcox P. The post-processing of ultrasonic array data using the total focusing method // Insight-Non-Destructive Testing and Condition Monitoring. 2004. V. 46. No. 11. P. 677-680.
  2. Базулин Е.Г. Сравнение систем для ультразвукового неразрушающего контроля, использующих антенные решетки или фазированные антенные решетки // Дефектоскопия. 2013. № 7. С. 51-75.
  3. Самокрутов А.А., Шевалдыкин В.Г. Ультразвуковая томография металлоконструкций методом цифровой фокусировки антенной решетки // Дефектоскопия. 2011. № 1. С. 21-38.
  4. Von Bernus L., Bulavinov A., Dalichow M., Joneit D., Kröning M., Reddy K. Sampling phased array - a new technique for signal processing and ultrasonic imaging // Insight. 2006. No. 48 (9). P. 545-549.
  5. ISO 23864:2021. Non-destructive testing of welds - Ultrasonic testing - Use of automated total focusing technique (TFM) and related technologies.
  6. ISO 23865:2021. Non-destructive testing - Ultrasonic testing - General use of full matrix capture/total focusing technique (FMC/TFM) and related technologies11. Real-time 3D imaging with Fourier-domain algorithms and matrix arrays applied to non-destructive testing.
  7. Базулин Е.Г. Ультразвуковой контроль на однократно отраженном луче с использованием прореженных антенных решеток и трехмерной обработки эхосигналов // Дефектоскопия. 2016. Т. 1. №. 1. С. 3-17.
  8. Hu H., Du J., Ye C., Li X. Ultrasonic phased array sparse-TFM imaging based on sparse array optimization and new edge-directed interpolation // Sensors. 2018. V. 18. No. 6. Art. number: 1830.
  9. Zhang H., Bai B., Zheng J., Zhou Y. Optimal design of sparse array for ultrasonic total focusing method by binary particle swarm optimization // IEEE Access. 2020. V. 8. P. 111945-111953.
  10. Hunter A.J., Drinkwater B.W., Wilcox P.D. The wavenumber algorithm for full-matrix imaging using an ultrasonic array // IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 2008. V. 55. №. 11. P. 2450-2462.
  11. Zhuang Z., Zhang J., Lian G., Drinkwater B. W.Comparison of time domain and frequency-wavenumber domain ultrasonic array imaging algorithms for non-destructive evaluation // Sensors. 2020. V 20 (17). Art. number: 4951.
  12. Marmonier M., Robert S., Laurent J., Prada C. Real-time 3D imaging with Fourier-domain algorithms and matrix arrays applied to non-destructive testing // Ultrasonics. 2022. V. 124. Art. number. 106708.
  13. Долматов Д.О., Седнев Д.А., Булавинов А.Н., Пинчук Р.В. Применение алгоритма расчета в частотной области для ультразвуковой томографии слоисто неоднородных сред с использованием матричных антенных решеток // Дефектоскопия. 2019. № 7. С. 12-19.
  14. Dolmatov D.O., Salchak Y.A., Pinchuk R. Frequency-domain imaging algorithm for ultrasonic testing by application of matrix phased arrays // MATEC Web of Conferences. 2017. V. 102. Art. number. С. 1015.
  15. Долматов Д.О., Ермошин Н.И. Цифровая когерентная обработка сигналов с расчетами в частотной области для решения задач ультразвуковой томографии с применением матричных антенных решеток с неэквидистантным расположением элементов // Дефектоскопия. 2022. № 10. С. 13-26.
  16. Greengard L., Lee J.Y. Accelerating the nonuniform fast Fourier transform // SIAM review. 2004. V. 46. No. 3. P. 443-454.
  17. Базулин Е.Г., Коколев С.А., Голубев А.С. Применение ультразвуковой антенной решетки для регистрации эхосигналов методом двойного сканирования для получения изображений дефектов // Дефектоскопия. 2009. № 2. С. 18-32.
  18. Holmes C., Drinkwater B.W., Wilcox P.D. Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation // NDT & E International. 2005. V. 38 (8). P. 701-711.
  19. Fan C., Caleap M., Pan M., Drinkwater B.W. A comparison between ultrasonic array beamforming and super resolution imaging algorithms for non-destructive evaluation // Ultrasonics. 2014. V. 54. No. 7. P. 1842-1850.
  20. Zhang J., Drinkwater B.W., Wilcox P.D., Hunter A.J. Defect detection using ultrasonic arrays: The multi-mode total focusing method // NDT&E International. 2010. V. 43. P. 123-133.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023