Sequence specificity of dimeric bisbenzimidazoles to AT-sequences of DNA of different nucleotide composition determined by footprinting

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The study aimed to investigate the site-specificity of binding to DNA of three series of minor groove ligands – dimeric bisbenzimidazoles DB2(n), DB2P(n), and DB2Py(n) – using DNAase I footprinting. The compounds consist of two bisbenzimidazole units linked by oligomethylene linkers of varying lengths (n), with structural modifications to enhance DNA-binding properties. The binding specificity of the compounds was determined using DNAase I footprinting. The DB2(n) and DB2P(n) series are analogs of Hoechst 33342, modified by removing hydrophobic ethoxyphenol cores and introducing hydrophilic aminomethylene groups. The DB2Py(n) series incorporates a pyrrolcarboxamide group, a structural unit of the AT-specific antibiotic netropsin. The interaction of these compounds with DNA sequences was analyzed to identify their binding preferences. All studied compounds demonstrated specificity for AT-rich DNA sequences. The DB2P(n) and DB2(n) series exhibited increased affinity for (AATT)3 and TTTT sequences. The DB2Py(n) series showed high specificity to AT-rich regions, with a preference for the TTTT motif. None of the compounds interacted with sequences containing fewer than four AT base pairs. These findings highlight the influence of structural modifications on DNA-binding specificity and affinity. The study revealed that dimeric bisbenzimidazoles DB2(n), DB2P(n), and DB2Py(n) exhibit distinct binding preferences for AT-rich DNA sequences, with DB2Py(n) showing a pronounced affinity for the TTTT motif. The results demonstrate the potential of these compounds as tools for targeting specific DNA sequences, with implications for molecular biology and drug design.

Texto integral

Acesso é fechado

Sobre autores

D. Naberezhnov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health

Email: susovaolga@gmail.com
Rússia, ul. Vavilova 32, Moscow, 119991; Kashirskoe shosse 24, Moscow, 115522

A. Arutuynyan

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: susovaolga@gmail.com
Rússia, ul. Vavilova 32, Moscow, 119991

A. Beniaminov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: susovaolga@gmail.com
Rússia, ul. Vavilova 32, Moscow, 119991

N. Smirnov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: susovaolga@gmail.com
Rússia, ul. Vavilova 32, Moscow, 119991

D. Kaluzhny

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: susovaolga@gmail.com
Rússia, ul. Vavilova 32, Moscow, 119991

A. Zhuze

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: susovaolga@gmail.com
Rússia, ul. Vavilova 32, Moscow, 119991

O. Susova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health

Autor responsável pela correspondência
Email: susovaolga@gmail.com
Rússia, ul. Vavilova 32, Moscow, 119991; Kashirskoe shosse 24, Moscow, 115522

Bibliografia

  1. Wu K., Peng X., Chen M., Li Y., Tang G., Peng J., Peng Y., Cao X. // Chem. Biol. Drug. Des. 2022. V. 99. P. 736–757. https://doi.org/10.1111/cbdd.14022
  2. Tyagi Y.K., Jali G., Singh R. // Med. Chem. 2022. V. 22. P. 3280–3290. https://doi.org/10.2174/1871520622666220429134818
  3. Alniss H.Y., Al-Jubeh H.M., Msallam Y.A., Siddiqui R., Makhlouf Z., Ravi A., Hamdy R., Soliman S.S.M., Khan N.A. // Eur. J. Med. Chem. 2024. V. 271. P. 116440. https://doi.org/10.1016/j.ejmech.2024.116440
  4. Pan T., He X., Chen B., Chen H., Geng G., Luo H., Zhang H., Bai C. // Eur. J. Med. Chem. 2015. V. 5. P. 500–513. https://doi.org/10.1016/j.ejmech.2015.03.050
  5. Phan N.K., Huynh T.K., Nguyen H.P., Le Q.T., Nguyen T.C., Ngo K.K., Nguyen T.H., Ton K.A., Thai K.M., Hoang T.K. // ACS Omega. 2023. V. 28. P. 28733–28748. https://doi.org/10.1021/acsomega.3c03530
  6. Teng M.K., Usman N., Frederick C.A., Wang A.H. // Nucleic Acids Res. 1988. V. 25. P. 2671–2690. https://doi.org/10.1093/nar/16.6.2671
  7. Breusegem S.Y., Clegg R.M., Loontiens F.G. // J. Mol. Biol. 2002. V. 1. P. 1049–1061. https://doi.org/10.1006/jmbi.2001.5301
  8. Bazhulina N.P., Nikitin A.M., Rodin S.A., Surovaya A.N., Kravatsky Y.V., Pismensky V.F., Archipova V.S., Martin R., Gursky G.V. // J. Biomol. Struct. Dyn. 2009. V. 26. P. 701–718. https://doi.org/10.1080/07391102.2009.10507283
  9. Streltsov S.A., Gromyko A.V., Oleinikov V.A., Zhuze A.L. // J. Biomol. Struct. Dyn. 2006. V. 24. P. 285–302. https://doi.org/10.1080/07391102.2006.10507121
  10. Ivanov A.A., Salianov V.I., Strel’tsov S.A., Cherepanova N.A., Gromova E.S., Zhuze A.L. // Russ. J. Bioorg. Chem. 2011. V. 37. P. 530–541. https://doi.org/10.1134/s1068162011040054
  11. Ivanov A.A., Koval V.S., Susova O.Y., Salyanov V.I., Oleinikov V.A., Stomakhin A.A., Shalginskikh N.A., Kvasha M.A., Kirsanova O.V., Gromova E.S., Zhuze A.L. // Bioorg. Med. Chem. Lett. 2015. V. 1. P. 2634–2638. https://doi.org/10.1016/j.bmcl.2015.04.087
  12. Neidle S. // Nat. Prod. Rep. 2001. V. 18. P. 291–309. https://doi.org/10.1039/a705982e
  13. Susova O.Y., Karshieva S.S., Kostyukov A.A., Moiseeva N.I., Zaytseva E.A., Kalabina K.V., Zusinaite E., Gildemann K., Smirnov N.M., Arutyunyan A.F., Zhuze A.L. // Act. Nat. 2024. V. 16. P. 86–100. https://doi.org/10.32607/actanaturae.27327
  14. Naberezhnov D.S., Kirsanov K.I., Glazunov V.Y., Belitskiy G.A., Yakubovskaya M.G. // Russ. Fundam. Res. 2015. V. 2. P. 5599–5604.
  15. Caneva R., De Simoni A., Mayol L., Rossetti L., Savino M. // Biochim. Biophys. Acta. 1997. V. 7. P. 93–97. https://doi.org/10.1016/s0167-4781(97)00091-2
  16. Isagulieva A.K., Kaluzhny D.N., Beniaminov A.D., Soshnikova N.V., Shtil A.A. // Int. J. Mol. Sci. 2022. V. 23. P. 8871. https://doi.org/10.3390/ijms23168871

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structural formulas of the studied narrow groove ligands.

Baixar (840KB)
3. Fig. 2. Profiles of DNase I cleavage of fluorescently labeled d150T PCR fragments in the presence of monomeric and dimeric bisbenzimidazoles. 0 – initial 150-bp PCR fragment; K – DNase I cleavage in the absence of narrow groove ligands; T – chemical cleavage at thymines; HT – cleavage in the presence of HT, MB2 cleavage in the presence of MB2, DB2(6) – cleavage in the presence of DB2(6), DB2P(1) – cleavage in the presence of DB2P(1).

Baixar (758KB)
4. Fig. 3. Profiles of DNase I cleavage of fluorescently labeled d150T PCR fragments in the presence of DB2P(n) series compounds. 1 (K) – initial 150-bp PCR fragment; 2 (T) – chemical cleavage at thymines; 3 (0) – DNase I cleavage in the absence of narrow groove ligands; 410 – cleavage in the presence of DB2P(1) taken at concentrations of 0.3, 0.6, 1.25, 2.5, 5, 10, and 20 μM, respectively; 11 – cleavage in the presence of 5 μM DB2P(2); 12 – cleavage in the presence of 5 μM DB2P(3); 13 – cleavage in the presence of 5 μM DB2P(4).

Baixar (675KB)
5. Fig. 4. Profiles of DNase I cleavage of fluorescently labeled d150T PCR fragments in the presence of DB2(n) series compounds.1 (K) – initial 150-bp PCR fragment; 2 (T) – chemical cleavage at thymines; 3 (0) – DNase I cleavage in the absence of narrow groove ligands; 410 – cleavage in the presence of DB2(6), taken at concentrations of 0.3, 0.6, 1.25, 2.5, 5, 10, and 20 μM, respectively; 11 – cleavage in the presence of 5 μM DB2(9); 12 – cleavage in the presence of 5 μM DB2(10); 13 – cleavage in the presence of 5 μM DB2(11).

Baixar (745KB)
6. Fig. 5. Profiles of DNase I cleavage of TAMRA-labeled d84AT PCR fragments in the presence of DB2P(1). 1 – original 84-nt PCR fragment; 2 – chemical cleavage at thymines; 3 – DNase I cleavage in the absence of DB2P(1); 410 – cleavage in the presence of DB2P(1) taken at concentrations of 0.3, 0.5, 1, 2, 4, 6, and 8 μM, respectively.

Baixar (775KB)
7. Fig. 6. Profiles of DNase I cleavage of FAM-labeled d87KNS PCR fragments in the presence of DB2P(1). 1 – initial 84-nucleotide PCR fragment; 2, 3 – chemical cleavage at adenines and guanines in the presence of formic acid; 4 – DNase I cleavage in the absence of narrow groove ligands; 59 – cleavage in the presence of DB2P(1) taken at concentrations of 0.06, 0.3, 1.6, 8, and 40 μM, respectively.

Baixar (918KB)
8. Fig. 7. Selectivity of compounds DB2Py(4) and DB2Py(5) to the nucleotide sequence.

Baixar (720KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025