New Stannandiamines Comprising Photoactive Fragments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The reactions of dibutyltin dichloride with potassium amides KNH-pap, KNH-4pbt, and KNH-2pbt (pap = 4-(phenylazo)phenyl; 4pbt = 1,3-benzothiazol-2-yl-4-phenyl; 2pbt = 1,3-benzothiazol-2-yl-2-phenyl) were studied. It was found that in the case of KNH-pap and KNH-4pbt, the only products formed were stannanediamines nBu2Sn(NH-pap)2 (I) and nBu2Sn(NH-4pbt)2 (II). However, in the case of KNH-2pbt, an inseparable mixture of stannanediamine nBu2Sn(NH-2pbt)2 ( III) and cyclodistannadiazane [nBu2Sn(N-2pbt)]2 (IV) was obtained. The molecular structures of compounds I–IV were determined by single-crystal X-ray diffraction (SCXRD) analysis of the crystalline phases I · 0.5C7H8, II · 0.5THF, III, and IV (CCDC No 2367378 (I · 0.5C7H8), 2367379 (II · 0.5THF), 2367380 (III), and 2367378 (IV)).

Full Text

Restricted Access

About the authors

A. G. Demkin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: konch@niic.nsc.ru
Russian Federation, Novosibirsk

E. P. Latushko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk National Research State University

Email: konch@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

B. Yu. Savkov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: konch@niic.nsc.ru
Russian Federation, Novosibirsk

T. S. Sukhikh

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: konch@niic.nsc.ru
Russian Federation, Novosibirsk

S. N. Konchenko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: konch@niic.nsc.ru
Russian Federation, Novosibirsk

References

  1. Liu B., Li L., Sun G. et al. // Macromolecules. 2014. V. 47. № 15. P. 4971.
  2. Liu B., Sun G., Li S. et al. // Organometallics. 2015. V. 34. № 16. P. 4063.
  3. Lu D., Yu J.K., Kuo T. et al. // Angew. Chemie Int. Ed. 2011. V. 50. № 33. P. 7611.
  4. Zhu X., Guo D., Zhang Y. et al. // Organometallics. 2020. V. 39. № 24. P. 4584.
  5. Zhu X., Guo D., Zhang Y. et al. // Organometallics. 2009. V. 28. № 13. P. 3882.
  6. Tazelaar C.G.J., Bambirra S., van Leusen D. et al. // Organometallics. 2004. V. 23. № 5. P. 936.
  7. Mironova O.A., Lashchenko D.I., Ryadun A.A. et al. // New J. Chem. 2022. V. 46. № 5. P. 2351.
  8. Баширов Д.А., Сухих Т.С., Конченко С.Н. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1211 (Bashirov D.A., Sukhikh T.S., Konchenko S.N // Russ. J. Inorg. Chem. 2023. V. 68. № 9. P. 1211). https://doi.org/10.31857/S0044457X23601025
  9. Mironova O.A., Ryadun A.A., Sukhikh T.S. et al. // New J. Chem. 2023. Vol. 47. № 7. P. 3406.
  10. Mironova O. A., Ryadun A.A., Pushkarevsky N.A. et al. // J. Struct. Chem. 2024. V. 65. № 2. P. 399.
  11. Jones K., Lappert M.F. // J. Chem. Soc. 1965. P. 1944.
  12. Дергунов Ю.И., Герега В.Ф., Дьячковская О.С. // Успехи химии 1977. Т. 46. № 12. С. 2139 (Dergunov Y.I., Gerega V.F., D’yachkovskaya O.S. // Russ. Chem. Rev. 1977. Vol. 46. № 12. P. 1132). https://doi.org/10.1070/RC1977v046n12ABEH002191
  13. Baz F.El, Riviere-Baudet M., Chazalettte C. et al. // Phosphorus. Sulfur. Silicon Relat. Elem. 2000. V. 163. № 1. P. 121.
  14. Padělková Z., Havlík A., Švec P.et al. // J. Organomet. Chem. 2010. V. 695. № 24. P. 2651.
  15. Afonin M.Y., Martynenko P.A., Kolybalov D.S. et al. // Inorg. Chem. 2024. V. 63. № 1. P. 369.
  16. Bandara H.M.D., Burdette S.C. // Chem. Soc. Rev. 2012. V. 41. № 5. P. 1809.
  17. Joshi N.K., Fuyuki M., Wada A. // J. Phys. Chem. B. 2014. V. 118. № 7. P. 1891–1899.
  18. Gordon A.J., Ford R.A. The chemist’s companion: a handbook of practical data, techniques and references. New York, 1973, 560 p.
  19. Zhang J., Guo W. // Chem. Commun. 2014. V. 50. № 32. P. 4214.
  20. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3.
  21. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
  22. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
  23. Diemer S., Noth H., Polborn K. et al. // Chem. Ber. 1992. V. 125. № 2. P. 389.
  24. Junk P.C., Leary S.G. // Inorg. Chim. Acta. 2004. V. 357. № 7. P. 2195.
  25. Schulz A., Thomas M., Villinger A. // Daltщт Trans. 2019. V. 48. № 1. P. 125.
  26. Sawyer J.F. // Acta Crystallogr. C. 1988. V. 44. № 4. P. 633.
  27. Schneider J., Krebs K.M., Freitag S. et al. // Chem. Eur. J. 2016. V. 22. № 28. P. 9812.
  28. Fischer M., Roy M.M.D., Wales L.L. et al. // Angew. Chem. Int. Ed. 2022. V. 61. № 48. Art. e2022116.
  29. Raharinirina A., Boese R., Schmid G. // J. Organomet. Chem. 1990. V. 395. № 1. P. 39.
  30. Lichtscheidl A.G., Janicke M.T., Scott B.L. et al. // Dalton Trans. 2015. V. 4. № 36. P. 16156.
  31. Fooken U., Saak W., Weidenbruch M. // J. Organomet. Chem. 1999. V. 579. № 1–2. P. 280.
  32. Janiak C. // Dalton. Trans. 2000. № 21. P. 3885.
  33. Piskunov A.V., Aivaz’yan I.A., Fukin G.K. et al. // Inorg. Chem. Commun. 2006. V. 9. № 6. P. 612.
  34. Ладо A.В., Пискунов А.В., Черкасов В.К. и др. // Коорд. химия. 2006. Т. 32. № 3. С. 181 (Lado A.V., Piskunov A.V., Cherkasov V.K. et al. // Russ. J. Coord. Chem. 2006. V. 32. № 3. P. 173). https://doi.org/10.1134/S1070328406030031
  35. Lado A.V., Poddel’sky A.I., Piskunov A.V. et al. // Inorg. Chim. Acta. 2005. V. 358. № 15. P. 4443.
  36. Seifert T., Storch W., Vosteen M. // Eur. J. Inorg. Chem. 1998. V. 1998. № 9. P. 1343.
  37. Fuentes N., Martín-Lasanta A., Álvarez de Cienfuegos L. et al. // Nanoscale. 2011. V. 3. № 10. P. 4003.
  38. Khisamov R.M., Ryadun A.A., Sukhikh T.S. et al. // Mol. Syst. Des. Eng. 2021. V. 6. № 12. P. 1056.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional material
Download (502KB)
3. Fig. 1. Structure of the molecule of compound I in phase I · 0.5C₇H₈. Hydrogen atoms are shown only for amino groups. The second positions of disordered fragments are shown by a dotted line.

Download (173KB)
4. Fig. 2. Structure of molecules of compound II in phase II · 0.5 THF: A — molecule in contact with THF; B — molecules not in contact with THF. Hydrogen atoms are shown only for amino groups.

Download (264KB)
5. Fig. 3. Structure of the molecule of compound III. The red arrow shows the axis of symmetry C₂. Hydrogen atoms are shown only for amino groups.

Download (130KB)
6. Fig. 4. Structure of one of two independent molecules of compound IV. Hydrogen atoms are not shown.

Download (160KB)
7. Scheme 1. Examples of bidentate N,N`-donor ligands NEN, from left to right: amidinates and guanidinates (NCN), triazenides (NNN), iminophosphonamidinates (NPN), silanediamides (NSiN).

Download (58KB)
8. Scheme 2. Photoactive fragments used in this work.

Download (53KB)
9. Scheme 3. Synthesis of compounds I and II.

Download (85KB)
10. Scheme 4. Reaction of ⁿBu₂SnCl₂ with K(NH-²pbt) and possible routes to the formation of compound III.

Download (161KB)

Copyright (c) 2025 Российская академия наук