Synthesis and Luminescent Properties of the Carbonyl-Isonitrile Re(I) Complex Based on Menthol-Modified Phenanthroline
- Authors: Davydova M.P.1, Agafontsev A.M.2, Yudin V.N.1, Rakhmanova M.I.1, Artem’ev A.V.1
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 51, No 7 (2025)
- Pages: 449-455
- Section: Articles
- URL: https://pediatria.orscience.ru/0132-344X/article/view/688156
- DOI: https://doi.org/10.31857/S0132344X25070036
- EDN: https://elibrary.ru/KPMXLL
- ID: 688156
Cite item
Abstract
A carbonyl-isonitrile complex of [Re(CO)₃(L)(m-XylylNC)]OTf formulation (m-XylylNC – 2,6-dimethyl-phenyl isocyanide) was synthesized based on the 1,10-phenanthroline ligand (L) containing a menthol fragment (MtO–) in position 2. The Re(I) atom in the cationic part of this complex has a distorted octahedral environment formed by the N,N′-chelate ligand L, one isonitrile ligand, and three CO ligands. The resulting compound exhibits bright green phosphorescence at room temperature in both the solid state and solution, with quantum yields of 15% and 10%, respectively.
Full Text

About the authors
M. P. Davydova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: chemisufarm@yandex.ru
Russian Federation, Novosibirsk
A. M. Agafontsev
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: chemisufarm@yandex.ru
Russian Federation, Novosibirsk
V. N. Yudin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: chemisufarm@yandex.ru
Russian Federation, Novosibirsk
M. I. Rakhmanova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: chemisufarm@yandex.ru
Russian Federation, Novosibirsk
A. V. Artem’ev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Author for correspondence.
Email: chemisufarm@yandex.ru
Russian Federation, Novosibirsk
References
- Kirgan R.A., Sullivan B.P., Rillema D.P. // Photochemistry and photophysics of coordination compounds II / Eds. Balzani V., Campagna S. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. P. 45.
- Abramov P.A., Dmitriev A.A., Kholin K.V. et al. // Electrochim. Acta. 2018, V. 270. P. 526. https://doi.org/10.1016/j.electacta.2018.03.111
- Abramov P.A., Brylev K.A., Vorob’ev A.Y. et al. // Polyhedron. 2017. V. 137. P. 231. https://doi.org/10.1016/j.poly.2017.08.046
- Абрамов П.А. // Журн. структур. химии. 2021 V. 62. P. 1513. https://doi.org/10.26902/JSC_id79933 (Abramov P.A. // J. Struct. Chem. 2021. V. 62. P. 1416. https://doi.org/10.1134/S0022476621090109).
- Abramov P.A., Gritsan N.P., Suturina E. A. et al. // Inorg. Chem. 2015. V. 54. P. 6727. https://doi.org/10.1021/acs.inorgchem.5b00407
- Nayeri S., Jamali S., Pavlovskiy V.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 4350. https://doi.org/10.1002/ejic.201900617
- Shakirova J.R., Nayeri S., Jamali S. et al. // ChemPlusChem. 2020. V. 85. P. 2518. https://doi.org/10.1002/cplu.202000597
- Kisel K.S., Baigildin V.A., Solomatina A.I. et al. // Molecules. 2023. V. 28. P. 348. https://doi.org/10.3390/molecules28010348
- Kisel K.S., Shakirova J.R., Pavlovskiy V.V. et al. // Inorg. Chem. 2023. V. 62. P. 18625. https://doi.org/10.1021/acs.inorgchem.3c02915
- Kisel K.S., Eskelinen T., Zafar W. et al. // Inorg. Chem. 2018. V. 57. P. 6349. https://doi.org/10.1021/acs.inorgchem.8b00422
- Kalyanasundaram K. // Faraday Trans. 2. 1986. V. 82. P. 2401. https://doi.org/10.1039/F29868202401
- Yu T., Tsang D.P.-K., Au V. K.-M. et al. // Chem. Eur. J. 2013. V. 19. P. 13418. https://doi.org/10.1002/chem.201301841
- Sacksteder L., Lee M., Demas J. et al. // J. Am. Chem. Soc. 1993. V. 115. P. 8230. https://doi.org/10.1021/ja00071a036
- Villegas J.M., Stoyanov S.R., Huang W. et al. // Inorg. Chem. 2005 V. 44. P. 2297. https://doi.org/10.1021/ic048786f
- Favale J.M., Jr., Danilov E.O., Yarnell J E. et al. // Inorg. Chem. 2019 V. 58. P. 8750. https://doi.org/10.1021/acs.inorgchem.9b01155
- Klemens T., Świtlicka A., Szlapa-Kula A. et al. // Organometallics. 2019. V. 38. P. 4206. https://doi.org/10.1021/acs.organomet.9b00517
- Taydakov I.V., Vashchenko A.A., Lyssenko K.A. et al. // ARKIVOC. 2017. V. 2017, P. 205. https://doi.org/10.24820/ark.5550190.p010.130
- Hostachy S., Policar C., Delsuc N. // Coord. Chem. Rev. 2017. V. 351. P. 172. https://doi.org/10.1016/j.ccr.2017.05.004
- Chelushkin P.S., Shakirova J.R., Kritchenkov I.S. et al. // Dalton Trans. 2022 V. 51. P. 1257. https://doi.org/10.1039/D1DT03077A
- Leonidova A., Gasser G. // ACS Chem. Biol. 2014. V.9. P. 2180. https://doi.org/10.1021/cb500528c
- Lee L.C.-C., Leung K.-K., Lo K.K.-W. // Dalton Trans. 2017. V. 46. P. 16357. https://doi.org/10.1039/C7DT03465B
- Kuninobu Y., Takai K. // Chem. Rev. 2011. V. 111. P. 1938. https://doi.org/10.1021/cr100241u
- Kisel K.S., Samandarsangari M., Sokolov V.V. et al. // Opt. Mater. 2025. V. 159. P. 116589. https://doi.org/10.1016/j.optmat.2024.116589
- Saleh N., Srebro M., Reynaldo T. et al. // Chem. Commun. 2015. V. 51. P. 3754. https://doi.org/10.1039/C5CC00453E
- Gauthier E.S., Abella L., Hellou N. et al. // Angew. Chem. Int. Ed. 2020. V. 59 P. 8394. https://doi.org/10.1002/anie.202002387
- Saleh N., Kundu D., Vanthuyne N. et al. // ChemPlusChem. 2020, Vol. 85, P. 2446. https://doi.org/10.1002/cplu.202000559
- Gauthier E.S., Abella L., Caytan E. et al. // Chem. Eur. J. 2023, Vol. 29, P. e202203477. https://doi.org/10.1002/chem.202203477
- Giuso V., Gourlaouen C., Delporte-Pébay M. et al. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 4855. https://doi.org/10.1039/D3CP04300B
- Kundu D., Jelonek D., Del Rio N. et al. // Chem. Asian J. год ? V. n/a. Аrt. e202401735. https://doi.org/10.1002/asia.202401735
- Davydova M.P., Xu T., Agafontsev A.M. et al. // Angew. Chem. Int. Ed. 2025. V. 64. Аrt. e202419788. https://doi.org/10.1002/anie.202419788
- Bruker Apex3 Software Suite: Apex3, SADABS‐2016/2 and SAINT 8.40a. 2017. V. ? Bruker AXS Inc., Madison, WI, USA.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42, P. 339. https://doi.org/10.1107/S0021889808042726
- van der Sluis P., Spek A.L. // Acta Crystallogr. A. 1990. V. 46. P. 194. https://doi.org/10.1107/S0108767389011189
- Ortega J.V., Khin K., van der Veer W.E. et al. // Inorg. Chem. 2000. V. 39. P. 3038. https://doi.org/10.1021/ic0006910
- Aechter B., Knizek J., Nöth H. et al. // Z. Kristallogr. NCS. 2005. V. 220. P. 107. https://doi.org/10.1524/ncrs.2005.220.14.107
- King A.P., Marker S.C., Swanda R.V. et al. // Chem. Eur. J. 2019. V. 25. P. 9206. https://doi.org/10.1002/chem.201902223
- Ko C.-C., Ng C.-O., Yiu S.-M. // Organometallics. 2012. V. 31. P. 7074. https://doi.org/10.1021/om300526e
- Marker S.C., King A.P., Granja S. et al. // Inorg. Chem. 2020. V. 59. P. 10285. https://doi.org/10.1021/acs.inorgchem.0c01442
- Тюпина М.Ю., Мирославов А.Е., Сидоренко Г.В. и др. // Журн. общ. химии. 2022. V. 92. P. 110. https://doi.org/10.31857/S0044460X22010127 (Tyupina M.Y., Miroslavov A.E., Sidorenko G.V. et al. // Russ. J. Gen. Chem. 2022, V. 92. P. 69. https://doi.org/10.1134/S1070363222010108).
Supplementary files
