TRT divertor optimization in SOLPS-ITER modeling

Cover Page

Cite item

Full Text

Abstract

The analysis of possible divertor working regimes and edge plasma parameters for TRT tokamak project is performed basing on modeling. It is shown that for the separatrix power of 18 MW corresponding to approximately twice higher full input power the low divertor integral heat flux 5 MW/m2 can be provided for the separatrix plasma density lower than 7 × 1019 m–3 and the effective charge Zeff lower than 2. These parameters are realistic for this device. In case of bigger separatrix power the working regime is possible with higher divertor heat load still within the technological limits of the machine. Modeling also shows positive effect of the increase of the distance between the separatrix and the vacuum vessel structures and better performance of the corner divertor configuration comparing to the “ITER-like” one.

Full Text

Restricted Access

About the authors

P. A. Molchanov

Peter the Great St. Petersburg Polytechnic University; Institution “Project Center ITER”

Email: E.Kaveeva@spbstu.ru
Russian Federation, St. Petersburg, 195251; Moscow, 123182

P. S. Kudrevatykh

Peter the Great St. Petersburg Polytechnic University; Institution “Project Center ITER”

Email: E.Kaveeva@spbstu.ru
Russian Federation, St. Petersburg, 195251; Moscow, 123182

N. V. Shtyrkhunov

Peter the Great St. Petersburg Polytechnic University; Institution “Project Center ITER”

Email: E.Kaveeva@spbstu.ru
Russian Federation, St. Petersburg, 195251; Moscow, 123182

E. G. Kaveeva

Peter the Great St. Petersburg Polytechnic University; Institution “Project Center ITER”

Author for correspondence.
Email: E.Kaveeva@spbstu.ru
Russian Federation, St. Petersburg, 195251; Moscow, 123182

V. A. Rozhansky

Peter the Great St. Petersburg Polytechnic University; Institution “Project Center ITER”

Email: E.Kaveeva@spbstu.ru
Russian Federation, St. Petersburg, 195251; Moscow, 123182

I. Yu. Senichenkov

Peter the Great St. Petersburg Polytechnic University; Institution “Project Center ITER”

Email: E.Kaveeva@spbstu.ru
Russian Federation, St. Petersburg, 195251; Moscow, 123182

References

  1. Kukushkin A.S., Pshenov A.A. // Plasma Phys. Rep. 2021. V. 47. P. 1238.
  2. Kaveeva E., Rozhansky V., Veselova I., Senichenkov I., Giroud C., Pitts R., Wiesen S., Voskoboynikov S. // Nuclear Materials Energy. 2021. V. 28. P. 101030.
  3. Yu Y., Zhou D., Sakamoto M., Cao B., Zuo G., Hu J. // Nuclear Materials Energy. 2023. V. 34. P. 101333.
  4. Pitts R.A., Bonnin X., Escourbiac F., Frerichs H., Gunn J.P., Hirai T., Kukushkin A.S., Kaveeva E., Miller M.A., Moulton D., Rozhansky V., Senichenkov I., Sytova E., Schmitz O., Stangeby P.C. // Nucl. Mater. Energy. 2019. V. 20. P. 100696.
  5. Krasilnikov A.V., Konovalov S.V., Bondarchuk E.N., Mazul I.V., Rodin I.Yu., Mineev A.B., Kuzmin E.G., Kavin A.A., Karpov D.A., Leonov V.M., Khayrutdinov R.R., Kukushkin A.S., Portnov D.V., Ivanov A.A., Belchenko Yu.I. // Plasma Phys. Rep. 2021. V. 47. P. 1092.
  6. Mazul I.V., Giniyatulinv R.N., Kavin A.A., Litunovskii N.V., Makhankov A.N., Piskarev P.Yu., Tanchuk V. N. // Plasma Phys. Rep. 2021. V. 47. P. 1220.
  7. Пискарев П.Ю., Мазуль И.В., Маханьков А.Н., Колесник М.С., Окунева Е.В., Литуновский Н.В. // ВАНТ. Сер. Термоядерный синтез. 2024. Т. 47. С. 41.
  8. Bonnin X., Dekeyser W., Pitts R., Coster D., Voskoboynikov S., Wiesen S. // Plasma Fusion Res. 2016. V. 11. P. 1403102.
  9. Eich T., Goldston R.J., Kallenbach A., Sieglin B., Sun H.J., ASDEX Upgrade Team and JET Contributors // Nuclear Fusion. 2018. V. 58. P. 034001.
  10. Xu G.S., Wang L., Yao D.M., Jia G.Z., C.F. Sang, Liu X.J., Chen Y.P., Si H., Yang Z.S., Guo H.Y., Du H.L., Luo Z.P. et al.// Nuclear Fusion. 2021. V. 61. P. 126070.
  11. Pan O., Bernert M., Lunt T., Cavedon M., Kurzan B., Wiesen S., Wischmeier M., Stroth U. and the ASDEX Upgrade Team // Nuclear Fusion. 2023. V. 63. P. 016001.
  12. Senichenkov I.Yu., Poletaeva A.G., Kaveeva E.G., Veselova I.Yu., Rozhansky V.A., Coster D., Bonnin X., Pitts R.A. // Nuclear Materials and Energy. 2023. V. 34. P. 101361.
  13. Senichenkov I.Yu. Ding R., Molchanov P.A., Kaveeva E.G., Rozhansky V.A., Voskoboynikov S.P., Shtyrkhunov N.V., Makarov S.O., Si H., Liu X., Sang C., Mao S.and CFETR Team// Nuclear Fusion. 2022. V. 62. P. 096010.
  14. Sun H.J., Silburn S.A., Carvalho I.S., King D.B., Giroud C., Fishpool G., Matthews G.F., Henriques R.B., Keeling D.L., Rimini F.G. et al. // Nuclear Fusion. 2023. V. 63. P. 016021.
  15. Giraud C., Pitts R.A., Kaveeva E., Rozhansky V., Brezinsek S., Huber A., Mailloux J., Marin M., Tomes M., Veselova I., Hillesheim J. // 48th EPS Confer. on Plasma Physics and Controlled Fusion, Amsterdam 27.06–01.07.2022. https://indico.fusenet.eu/event/28/contributions/500/
  16. Ambrosino R. // Fusion Engineering and Design. 2021. V. 167. P. 112330.
  17. Rodriguez-Fernandez P., Creely A.J., Greenwald M.J., Brunner D., Ballinger S.B., Chrobak C.P., Garnier D.T., Granetz R., Hartwig Z.S., Howard N.T. et al. // Nuclear Fusion. 2022. V. 62. P. 042003.
  18. Potzel S., Wischmeier M., Bernert M., Dux R., Reimold F., Scarabosio A., Brezinsek S., Clever M., Huber A., Meigs A., Stamp M. // Journal of Nuclear Materials. 2015. V. 463. P. 541–545.
  19. Loarte A. // Plasma Phys. Control. Fusion. 2001. V. 43. P. R183.
  20. Rozhansky V., Kaveeva E., Senichenkov I., Sytova E., Veselova I., Voskoboynikov S., Coster D. // Contrib. Plasma Phys. 2018. V. 58. P. 540.
  21. McCormick K., Dux R., Fischer R., Scarabosio A., the ASDEX Upgrade Team. // Journal of Nuclear Materials. 2009. V. 390–391. P. S465.
  22. Bernert M., Janky F., Sieglin B., Kallenbach A., Lipschultz B., Reimold F., Wischmeier M., Cavedon M., David P., Dunne M.G. et al. // Nuclear Fusion. 2021. V. 61. P. 024001.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Illustration of the chamber and magnetic equilibrium optimization for the TRT tokamak project: the first configuration for the 2022 calculation, SOL width RSOL = 1.8 cm (a); intermediate configuration with modified baffles, chamber top and equilibrium, RSOL = 3.6 cm (b); selection of the optimal magnetic configuration, RSOL = 3.6, 4.6, 5.0 cm (c); final configuration for the calculation, RSOL = 5.0 cm (d).

Download (54KB)
3. Fig. 2. Profiles of plasma parameters at the outer lower plate of the divertor for different RSOLs: ion temperature, Ti (a); electron temperature, Te (b); energy flux density, qtot (c); electron density, ne (d).

Download (46KB)
4. Fig. 3. Elements of the first wall and chamber for the TRT tokamak project with a grid for the SOLPS-ITER numerical code (a). The EIRENE grid is shown in orange, B2.5 in purple, the inlet surface in light green, and the pumping surface in blue. Anomalous transport coefficients: diffusion D, ion thermal conductivity χi, and electron thermal conductivity χe (b).

Download (40KB)
5. Fig. 4. Plasma parameters on the outer bypass with different inflows of working gas and impurity: electron density ni (a), ion and electron temperature (b), neon density, nNe (c), effective charge, Zeff (d).

Download (45KB)
6. Fig. 5. Plasma parameters at the external divertor with different working gas and impurity inlets: ion temperature, Ti (a); electron temperature, Te (b); energy flux density, qtot (c); electron density, ne (d).

Download (47KB)
7. Fig. 6. Design of the EAST tokamak angular divertor [3].

Download (20KB)
8. Fig. 7. Computational grid for the SOLPS-ITER code in the corner divertor modeling variants: initial geometry of the TRT 2023 project plates (variant 1, default) (a), outer corner divertor (variant 2, corner outer) (b); inner and outer corner (with the separatrix position on the vertical plates) (variant 3, corner vertical) (c); inner and outer corner (with the separatrix position in the corners) (variant 4, corner) (d). The EIRENE grid is shown in orange, and the B2.5 grid is shown in purple.

Download (40KB)
9. Fig. 8. Enlarged computational grid for the SOLPS-ITER code in the variants of modeling an angular divertor with different positions of the intersection point of the separatrix with the divertor plates: upper plate (variant 3, corner vertical) (a); angle between the plates (variant 4, corner) (b).

Download (40KB)
10. Fig. 9. Plasma parameters on the outer bypass with different inflows of working gas and impurities: electron density (a), ion and electron temperature (b), neon density (c), effective charge (d).

Download (47KB)
11. Fig. 10. Plasma parameters on the inner bypass with different inlets of working gas and impurity: electron density (a), ion and electron temperature (b), neon density (c), effective charge (d).

Download (43KB)
12. Fig. 11. Profiles of plasma parameters at the outer plate for different divertor configurations: ion temperature, Ti (a); electron temperature, Te (b); energy flux density, qtot (c); electron density, ne (d).

Download (45KB)
13. Fig. 12. Profiles of plasma parameters at the inner plate for different divertor configurations: ion temperature, Ti (a); electron temperature, Te (b); energy flux density, qtot (c); electron density, ne (d).

Download (43KB)
14. Fig. 13. Two-dimensional profiles of electron concentration over the tokamak cross-section for different divertor configurations: variant 1 (a), variant 2 (b), variant 3 (c), variant 4 (d).

Download (40KB)
15. Fig. 14. Two-dimensional temperature profiles of ions at the divertor plates for different divertor configurations: variant 1 (a), variant 2 (b), variant 3 (c), variant 4 (d).

Download (40KB)
16. Fig. 15. Two-dimensional profiles of neon impurity radiation in the divertor region for different divertor configurations: variant 1 (a), variant 2 (b), variant 3 (c), variant 4 (d).

Download (20KB)
17. Fig. 16. Two-dimensional profiles of the ionization source for deuterium ions in the divertor region for different divertor configurations: variant 1 (a), variant 2 (b), variant 3 (c), variant 4 (d).

Download (19KB)
18. Fig. 17. Pressure of neutral deuterium (atoms + molecules) in the divertor region: variant 1 (a), variant 2 (b), variant 3 (c), variant 4 (d).

Download (21KB)
19. Fig. 18. Position of the separatrix on the outer divertor: the intersection point of the separatrix is ​​on the lower plate (a); the intersection point of the separatrix is ​​on the upper plate (b); the intersection point of the separatrix is ​​at the corner of the intersection of the plates (c).

Download (37KB)
20. Fig. 19. Plasma parameters on the outer bypass with different inlets of working gas and impurities: electron density (a), ion and electron temperature (b), neon density (c), effective charge (d).

Download (43KB)
21. Fig. 20. Plasma parameters on the inner bypass with different inlets of working gas and impurity: electron density (a), ion and electron temperature (b), neon density (c), effective charge (d).

Download (41KB)
22. Fig. 21. Plasma parameter profiles at the outer plate for different positions of the separatrix in the outer divertor.

Download (44KB)
23. Fig. 22. Plasma parameter profiles at the inner plate for different positions of the separatrix in the outer divertor.

Download (44KB)
24. Fig. 23. Two-dimensional profiles of the electron concentration over the tokamak cross-section for different positions of the separatrix: the intersection point of the separatrix on the lower outer plate (horizontal) (a), the intersection point of the separatrix on the upper outer plate (vertical) (b), the intersection point of the separatrix exactly in the corner between the outer plates (angular) (c).

Download (45KB)
25. Fig. 24. Two-dimensional electron temperature profiles at the divertor plates for the divertor configurations corresponding to Fig. 23.

Download (26KB)
26. Fig. 25. Two-dimensional profiles of neon impurity radiation in the divertor region for divertor configurations corresponding to Fig. 23.

Download (24KB)
27. Fig. 26. Two-dimensional profiles of the ionization source for deuterium ions in the divertor region for the divertor configurations corresponding to Fig. 23.

Download (25KB)
28. Fig. 27. Pressure of neutral deuterium (atoms + molecules) in the divertor region for the configurations of Fig. 23.

Download (19KB)

Copyright (c) 2024 Russian Academy of Sciences