Lokal'naya termometriya cheshuyki NbSe2 putem izmereniya del'ta-T shuma

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Мы измеряем транспорт и шум в образце, представляющем собой тонкую чешуйку NbSe2, уложенную на предварительно реализованные золотые электроды и покрытую тонкой чешуйкой hBN. В дробовом шуме туннельного перехода NbSe2/Au мы идентифицируем режим андеевского отражения, демонстрируя эффективное удвоение заряда. Создавая градиент температуры на туннельном переходе и измеряя его дельта-T шум в нормальном состоянии, мы извлекаем длину электрон-фононного рассеяния в NbSe2 и ее зависимость от температуры. Результаты измерений дельта-T шума в отсутствие магнитного поля, когда чешуйка находится в сверхпроводящем состоянии, качественно согласуются с ожиданиями. Предложенный подход является перспективным для изучения неравновесных конфигураций в сверхпроводниках.

作者简介

M. Prokudina

Институт физики твердого тела имени Ю. А. Осипьяна РАН

Черноголовка, Россия

A. Shevchun

Институт физики твердого тела имени Ю. А. Осипьяна РАН

Черноголовка, Россия

V. Khrapay

Институт физики твердого тела имени Ю. А. Осипьяна РАН

Черноголовка, Россия

E. Tikhonov

Институт физики твердого тела имени Ю. А. Осипьяна РАН

Email: tikhonov@issp.ac.ru
Черноголовка, Россия

参考

  1. F. Giazotto, T.T. Heikkil¨a, A. Luukanen, A.M. Savin, and J. P. Pekola, Rev. Mod. Phys. 78, 217 (2006).
  2. G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, Appl. Phys. Lett. 79, 705 (2001).
  3. E. D.Walsh, W. Jung, G.-H. Lee, D. K. Efetov, B.-I. Wu, K.-F. Huang, T. A. Ohki, T. Taniguchi, K. Watanabe, P. Kim, D. Englund, and K. C. Fong, Science 372, 409 (2021).
  4. L. Grünhaupt, N. Maleeva, S. T. Skacel, M. Calvo, F. Levy-Bertrand, A. V. Ustinov, H. Rotzinger, A. Monfardini, G. Catelani, and I. M. Pop, Phys. Rev. Lett. 121, 117001 (2018).
  5. K. Serniak, M. Hays, G. De Lange, S. Diamond, S. Shankar, L. D. Burkhart, L. Frunzio, M. Houzet, and M. H. Devoret, Phys. Rev. Lett. 121, 157701 (2018).
  6. L. L.D. Alegria, C.G. L. Bøttcher, A.K. Saydjari, A.T. Pierce, S.H. Lee, S.P. Harvey, U. Vool, and A. Yacoby, Nat. Nanotechnol. 16, 404 (2021).
  7. S. B. Kaplan, J. R. Kirtley, and D. N. Langenberg, Phys. Rev. Lett. 39, 291 (1977).
  8. T. Jalabert, E. F. C. Driessen, F. Gustavo, J. L. Thomassin, F. Levy-Bertrand, and C. Chapelier, Nature Phys. 19, 956 (2023).
  9. T. Gramespacher and M. B¨uttiker, Phys. Rev. B 60, 2375 (1999).
  10. E. S. Tikhonov, D. V. Shovkun, D. Ercolani, F. Rossella, M. Rocci, L. Sorba, S. Roddaro, and V. S. Khrapai, Sci. Rep. 6, 30621 (2016).
  11. E. S. Tikhonov, A. O. Denisov, S. U. Piatrusha, I. N. Khrapach, J. P. Pekola, B. Karimi, R. N. Jabdaraghi, and V. S. Khrapai, Phys. Rev. B 102, 085417 (2020).
  12. H. Pothier, S. Gu´eeron, N.O. Birge, D. Esteve, and M.H. Devoret, Phys. Rev. Lett. 79, 3490 (1997).
  13. D. Qiu, C. Gong, S. Wang, M. Zhang, C. Yang, X. Wang, and J. Xiong, Adv. Mater. 33, 2006124 (2021).
  14. K. Shein, E. Zharkova, M. Kashchenko, A. Kolbatova, A. Lyubchak, L. Elesin, E. Nguyen, A. Semenov, I. Charaev, A. Schilling, G. Goltsman, K. S. Novoselov, I. Gayduchenko, and D. A. Bandurin, Nano Lett. 24, 2282 (2024).
  15. E. Khestanova, J. Birkbeck, M. Zhu, Y. Cao, G. L. Yu, D. Ghazaryan, J. Yin, H. Berger, L. Forro, T. Taniguchi, K. Watanabe, R. V. Gorbachev, A. Mishchenko, A. K. Geim, and I. V. Grigorieva, Nano Lett. 18, 2623 (2018).
  16. N. Hoshi, D. Inoue, H. Sonoda, D. Yabe, H. Tomori, and A. Kanda, J. Phys. Conf. Ser. 1293, 012016 (2019).
  17. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
  18. Ya.M. Blanter and M. B¨uttiker, Phys. Rep. 336, 1 (2000).
  19. K. Nagaev, Phys. Lett. A 169, 103 (1992).
  20. C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
  21. X. Jehl, M. Sanquer, R. Calemczuk, and D. Mailly, Nature 405, 50 (2000).
  22. A. A. Kozhevnikov, R. J. Schoelkopf, and D. E. Prober, Phys. Rev. Lett. 84, 3398 (2000).
  23. A. Das, Y. Ronen, M. Heiblum, D. Mahalu, A. V. Kretinin, and H. Shtrikman, Nat. Commun. 3, 1165 (2012).
  24. Y. Ronen, Y. Cohen, J.-H. Kang, A. Haim, M.-T. Rieder, M. Heiblum, D. Mahalu, and H. Shtrikman, Proceedings of the National Academy of Sciences 113, 1743 (2016).
  25. A. Denisov, A. Bubis, S. Piatrusha, N. Titova, A. Nasibulin, J. Becker, J. Treu, D. Rubstorfer, G. Kohlmuller, E. Tikhonov, and V. Khrapai, Nanomaterials 12, 1461 (2022).
  26. N. Paradiso, A.-T. Nguyen, K. Enzo Kloss, and C. Strunk, 2D Materials 6, 025039 (2019).
  27. R. Moriya, N. Yabuki, and T. Machida, Phys. Rev. B 101, 054503 (2020).
  28. E. V. Shpagina, E. S. Tikhonov, D. Rubstorfer, G. Kohlmuller, and V. S. Khrapai, Phys. Rev. B 109, L140501 (2024).
  29. A. Anthore, H. Pothier, and D. Esteve, Phys. Rev. Lett. 90, 127001 (2003).
  30. H. Le Sueur, P. Joyez, H. Pothier, C. Urbina, and D. Esteve, Phys. Rev. Lett. 100, 197002 (2008).
  31. N. Vercruyssen, T. G. A. Verhagen, M. G. Flokstra, J. P. Pekola, and T. M. Klapwijk, Phys. Rev. B 85, 224503 (2012).
  32. G.C. M´enard, S. Guissart, C. Brun, S. Pons, V. S. Stolyarov, F. Debontridder, M.V. Leclerc, E. Janod, L. Cario, D. Roditchev, P. Simon, and T. Cren, Nature Phys. 11, 1013 (2015).
  33. T. Dvir, F. Massee, L. Attias, M. Khodas, M. Aprili, C. H. L. Quay, and H. Steinberg, Nat. Commun. 9, 598 (2018).
  34. M. L. Roukes, M. R. Freeman, R. S. Germain, R. C. Richardson, and M. B. Ketchen, Phys. Rev. Lett. 55, 422 (1985).
  35. A. H. Steinbach, J. M. Martinis, and M. H. Devoret, Phys. Rev. Lett. 76, 3806 (1996).
  36. B. Huard, H. Pothier, D. Esteve, and K. E. Nagaev, Phys. Rev. B 76, 165426 (2007).
  37. A. C. Betz, S. H. Jhang, E. Pallecchi, R. Ferreira, G. Feve, J.-M. Berroir, and B. Placais, Nature Phys. 9, 109 (2013).
  38. B. A. Polyak, V. S. Khrapai, and E. S. Tikhonov, JETP Lett. 119, 610 (2024).
  39. O. S. Lumbroso, L. Simine, A. Nitzan, D. Segal, and O. Tal, Nature 562, 240 (2018).
  40. T. Ota, M. Hashisaka, K. Muraki, and T. Fujisawa, J. Phys. Condens. Matter 29, 225302 (2017).
  41. E. M. Baeva, N. A. Titova, A. I. Kardakova, S. U. Piatrusha, and V. S. Khrapai, JETP Lett. 111, 104 (2020).
  42. E. M. Baeva, N. A. Titova, L. Veyrat, B. Sac´ep´e, A. V. Semenov, G. N. Goltsman, A. I. Kardakova, and Vadim. S. Khrapai, Phys. Rev. Appl. 15, 054014 (2021).
  43. A. O. Denisov, E. S. Tikhonov, S. U. Piatrusha, I. N. Khrapach, F. Rossella, M. Rocci, L. Sorba, S. Roddaro, and V. S. Khrapai, Nanotechnology 31, 324004 (2020).
  44. M. Henny, S. Oberholzer, C. Strunk, and C. Sch¨onenberger, Phys. Rev. B 59, 2871 (1999).
  45. S. S. Kubakaddi, Phys. Rev. B 79, 075417 (2009).
  46. A. M. R. Baker, J. A. Alexander-Webber, T. Altebaeumer, and R. J. Nicholas, Phys. Rev. B 85, 115403 (2012).
  47. A. C. Betz, F. Vialla, D. Brunel, C. Voisin, M. Picher, A. Cavanna, A. Madouri, G. Feve, J.-M. Berroir, B. Placais, and E. Pallecchi, Phys. Rev. Lett. 109, 056805 (2012).
  48. K. C. Fong and K. C. SchwabPhys. Rev. X 2, 031006 (2012).
  49. E. Pinsolle, A. Rousseau, C. Lupien, and B. Reulet, Phys. Rev. Lett. 116, 236601 (2016).
  50. M. Y. Reizer and A. Sergeyev, ZhETF 90, 1056 (1986).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025