РАЗРЕШИМОСТЬ СИСТЕМЫ НЕЛИНЕЙНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ С КУСОЧНО-ПОСТОЯННЫМИ ЯДРАМИ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Рассматривается модель динамики популяции одновидового биологического сообщества, предложенная У. Дикманом и Р. Лоу. Изменения в популяции описываются системой интегро-дифференциальных уравнений, которая характеризует динамику пространственных моментов и в состоянии равновесия сводится к нелинейному интегральному уравнению. Исследуется разрешимость этого уравнения, по которому выписывается решение исходной системы, для чего строится нелинейный интегральный оператор и решается задача о нахождении его неподвижной точки. Устанавливаются достаточные условия существования нетривиального решения. Приводится аналитический пример значений биологических параметров, которые удовлетворяют этим условиям.

Об авторах

П. С Нестеренко

Университет МГУ-ППИ в Шэньчжэне

Email: polina_nesterenko2024@mail.ru
Китай

А. А Никитин

Московский государственный университет имени М.В. Ломоносова

Email: rukitin@cs.msu.ru
Russia

М. В Николаев

Московский государственный университет имени М.В. Ломоносова

Email: nikolaev.mihail@inbox.ru
Russia

Список литературы

  1. Law, R. Moment approximations of individual-based models / R. Law, U. Dieckmann // The Geometry of Ecological Interactions: Simplifying Spatial Complexity. — Cambridge : Cambridge University Press, 2000. — P. 252–270.
  2. Dieckmann, U. Relaxation projections and the method of moments / U. Dieckmann, R. Law // The Geometry of Ecological Interactions: Simplifying Spatial Complexity. — Cambridge : Cambridge University Press, 2000. — P. 412–455.
  3. Красносельский, М.А. Два замечания о методе последовательных приближений / М.А. Красносельский // Успехи мат. наук. — 1955. — Т. 10, № 1 (63). — С. 123–127.
  4. Никитин, А.А. О замыкании пространственных моментов в биологической модели, и интегральных уравнениях, к которым оно приводит / А.А. Никитин // Int. J. Open Inform. Technol. — 2018. — Т. 6, № 10. — С. 1–8.
  5. Murrell, D. On moment closures for population dynamics in continuous space / D. Murrell, U. Dieckmann, R. Law // J. Theor. Biol. — 2004. — V. 229, № 3. — P. 421–432.
  6. Николаев, М.В. Принцип Лере-Шаудера в применении к исследованию одного нелинейного интегрального уравнения / М.В. Николаев, А.А. Никитин // Дифференц. уравнения. — 2019. — Т. 55, № 9. — С. 1209–1217.
  7. Водров, А.Г. Качественный и численный анализ интегрального уравнения, возникающего в модели стационарных сообществ / А.Г. Водров, А.А. Никитин // Докл. Акад. наук. — 2014. — Т. 455, № 5. — С. 507–511.
  8. Водров, А.Г. Исследование интегрального уравнения плотности биологического вида в пространствах различных размерностей / А.Г. Водров, А.А. Никитин // Вест. Моск. ун-та. Сер. 15: Вычислит. математика и кибернетика. — 2015. — № 4. — С. 7–13.
  9. Никитин, А.А. Исследование интегрального уравнения равновесия с ядрами-куртознанами в пространствах различных размерностей / А.А. Никитин, М.В. Николаев // Вестн. Моск. ун-та. Сер. 15: Вычислит. математика и кибернетика. — 2018. — № 3. — С. 11–19.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025