Influence of separate and combined action of γ-radiation and lead nitrate on germination, antioxidant status and cytogenetic indicators of spring barley seedlings

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Exposure of seeds to a dose of γ-radiation of 20 Gy and a concentration of 2 mg/ml lead significantly modifies the oxidative status of barley plants. Lead at the concentration studied is capable of suppressing the development of seedlings, but is inferior to γ-radiation in its ability to induce cytogenetic abnormalities in the root meristem. Lead toxicity affects roots much more than shoots because roots interact directly with the lead solution. Preliminary seeds γ-irradiation modifies the oxidative status of plants, which reduces the negative effect of lead on seed germination and mitotic activity of cells. The combined action of lead and ionizing radiation does not lead to increased oxidative stress and an increase in the frequency of cytogenetic abnormalities compared to their separate action.

全文:

受限制的访问

作者简介

Stanislav Geras’kin

National Research Center “Kurchatov Institute” – RIRAE

编辑信件的主要联系方式.
Email: stgeraskin@gmail.com
ORCID iD: 0000-0001-9978-3049
俄罗斯联邦, Obninsk

Alexander Prazyan

National Research Center “Kurchatov Institute” – RIRAE

Email: stgeraskin@gmail.com
俄罗斯联邦, Obninsk

Denis Vasiliev

National Research Center “Kurchatov Institute” – RIRAE

Email: stgeraskin@gmail.com
ORCID iD: 0000-0003-0463-0029
俄罗斯联邦, Obninsk

Sofia Bitarishvili

National Research Center “Kurchatov Institute” – RIRAE

Email: stgeraskin@gmail.com
ORCID iD: 0000-0002-3623-7128
俄罗斯联邦, Obninsk

Alena Smirnova

National Research Center “Kurchatov Institute” – RIRAE

Email: stgeraskin@gmail.com
ORCID iD: 0009-0006-1263-9188
俄罗斯联邦, Obninsk

Ekaterina Shesterikova

National Research Center “Kurchatov Institute” – RIRAE

Email: stgeraskin@gmail.com
ORCID iD: 0000-0001-6737-5753
俄罗斯联邦, Obninsk

Anastasiya Khanova

National Research Center “Kurchatov Institute” – RIRAE

Email: stgeraskin@gmail.com
ORCID iD: 0000-0003-1171-0844
俄罗斯联邦, Obninsk

Ivan Pishenin

National Research Center “Kurchatov Institute” – RIRAE

Email: stgeraskin@gmail.com
ORCID iD: 0000-0002-2633-9251
俄罗斯联邦, Obninsk

Elizaveta Kazakova

National Research Center “Kurchatov Institute” – RIRAE

Email: stgeraskin@gmail.com
ORCID iD: 0000-0002-2975-5891
俄罗斯联邦, Obninsk

Ekaterina Kvichanskaia

National Research Center “Kurchatov Institute” – RIRAE

Email: stgeraskin@gmail.com
ORCID iD: 0000-0001-7519-9550
俄罗斯联邦, Obninsk

Mariya Lychenkova

National Research Center “Kurchatov Institute” – RIRAE

Email: stgeraskin@gmail.com
ORCID iD: 0000-0001-6148-2021
俄罗斯联邦, Obninsk

Darya Babina

National Research Center “Kurchatov Institute” – RIRAE

Email: stgeraskin@gmail.com
ORCID iD: 0000-0003-2544-9667
俄罗斯联邦, Obninsk

Marina Korol

National Research Center “Kurchatov Institute” – RIRAE

Email: stgeraskin@gmail.com
ORCID iD: 0000-0003-0911-2650
俄罗斯联邦, Obninsk

Yana Blinova

National Research Center “Kurchatov Institute” – RIRAE

Email: stgeraskin@gmail.com
俄罗斯联邦, Obninsk

Mikhail Podlutskii

National Research Center “Kurchatov Institute” – RIRAE

Email: stgeraskin@gmail.com
ORCID iD: 0000-0002-7890-0469
俄罗斯联邦, Obninsk

参考

  1. Palumbl S.R. Humans as the world’s greatest evolutionary force. Science. 2001;293:1786–1790.
  2. Aslam M., Aslam A., Sheraz M. et al. Lead toxicity in cereals: Mechanistic insight into toxicity, mode of action, and management. Front. Plant Sci. 2021;11:587785.
  3. Санжарова Н.И., Цыгвинцев П.Н., Анисимов В.С. и др. Тяжелые металлы в агроценозах: миграция, действие, нормирование. Обнинск: ФГБНУ ВНИИРАЭ, 2019. 398 с. [Sanzharova N.I., Tsigvintsev P.N., Anisimov V.S. et al. Tiazholie metally v agrotsenozah: migratsia, deistvie, normirovanie. Obninsk: FGBNU VNIIRAE, 2019. 398 p. (In Russ.)]
  4. Алексахин Р.М., Фесенко С.В., Гераськин С.А. и др. Методика оценки экологических последствий техногенного загрязнения агроэкосистем. М., 2004. 88 с. [Alexakhin R.M., Fesenko S.V., Geras’kin S.A. et al. Metodika otsenki ekologicheskih posledstviy technogennogo zagriazneniya agroekosistem. M., 2004. 88 p. (In Russ.)]
  5. Gudkov S.V., Grinberg M.A., Sukhov V., Vodeneev V. Effect of ionizing radiation on physiological and molecular processes in plants. J. Environ. Radioactiv. 2019;202:8-24.
  6. Choudhury F.K., Rivero R.M., Blumwald E., Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90:856–867.
  7. Geras’kin S.A., Kim J.K., Dikarev V.G. et al. Cytogenetic effects of combined radioactive (137Cs) and chemical (Cd, Pb, and 2,4-D herbicide) contamination on spring barley intercalar meristem cells. Mutat. Res. 2005;586:147–159.
  8. Qi W., Zhang L., Wang L. et al. Pretreatment with low-dose gamma irradiation enhances tolerance to the stress of cadmium and lead in Arabidopsis thaliana seedlings. Ecotoxicol. Environ. Saf. 2015;115:243–249.
  9. Wang X., Ma R., Cui D. et al. Physio-biochemical and molecular mechanism underlying the enhanced heavy metal tolerance in highland barley seedlings pretreated with low-dose gamma irradiation. Scient. Rep. 2017;7:14233.
  10. Mohammed A.H.M.A., Mohamed H.I., Zaki L.M., Mogazy A.M. Pre-exposure to gamma rays alleviates the harmful effect of salinity on cowpea plants. J. Stress Physiology & Biochemistry. 2012; 8(4):199–217.
  11. Козьмин Г.В., Гераськин С.А., Санжарова Н.И. и др. Радиационные технологии в сельском хозяйстве и пищевой промышленности. Обнинск: ФГБНУ ВНИИРАЭ, 2015. 400 с. [Kozmin G.V., Geras’kin S.A., Sanzharova N.I. et al. Radiatsionnie tekhnologii v selskom hoziaistve I pischevoy promishlennosti. Obninsk: FGBNU VNIIRAE, 2015. 400 p. (In Russ.)]
  12. Newton A.S., Flavell A.J., George T.S. et al. Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Security. 2011;3(2):141.
  13. Geras’kin S, Churyukin R, Volkova P. Radiation exposure of barley seeds can modify the early stages of plants’ development. J. Environ. Radioactiv. 2017;177:71–83.
  14. Дикарев А.В., Дикарев В.Г., Дикарева Н.С., Гераськин С.А. Внутривидовой полиморфизм ярового ячменя (Hordeum vulage L.) по устойчивости к действию свинца. Сельскохоз. биология. 2014;(5):78–87. [Dikarev A.V., Dikarev V.G., Dikareva N.S., Geras’kin S.A. Vnutrividovoy polimorphizm yarovogo yachmenia (Hordeum vulage L.) po ustoichvosti k deystviyu svintsa. Selskohoziaistvennaya biologia. 2014;(5):78–87. (In Russ.)]
  15. ГОСТ 12038–84 Межгосударственный стандарт. Семена сельскохозяйственных культур. Методы определения всхожести. Стандарты на методы контроля. М.: Стандартинформ, 2002. 28 с. [GOST 12038-84 Mezgosudarstvenniy standart. Semena selskohoziaystvennih kultur. Metodi opredelenia vshozesti. Standarti na metodi kontrolia. M.: Standartinform, 2002. 28 p. (In Russ.)]
  16. Бабаян Р.С. Проращивание семян в рулонах из фильтровальной бумаги и полиэтиленовой пленки. Сельскохоз. биология. 1981;(3):473–475. [Babayan R.S. Prorschvanie semian v rulonah iz filtrovalnoy bumagi i polietilenovoy plenki. Selskohoziaystvennaya biologia. 1981;(3):473–475. (In Russ.)]
  17. Walker J.R.L. Enzyme isolation from plants and the phenolic problem. – What’s New. Plant Physiol. 1980;11:33–36.
  18. Биссвенгер Х. Практическая энзимология. М.: БИНОМ. Лаборатория знаний, 2013. 328 с. [Bissvanger H. Prakticheskaya enzimologia. M.: BINOM. Laboratoria znaniy, 2013. 328 p. (In Russ.)]
  19. Разыграев А.В., Петросян М.А., Базиян Е.В., Полянских Л.С. Исследование активности каталазы в гетеротопиях в экспериментальной модели эндометриоза. Журн. акушерства и женских болезней. 2019;68(6):57–63. [Razigrayev A.V., Petrosian M.A., Baziyan E.V., Polianskih L.S. Issledovanie aktivnosti katalazy v geterotopiyah v eksperimentalnoy modely endometrioza. Zurnal akusherstva i zenskih bolezney. 2019;68(6):57–63. (In Russ.)]
  20. Verma S., Dubey R.S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants . Plant Science. 2003;164:645–655.
  21. Zhang Z., Huang R. Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio Protocol. 2013;3(14):e817.
  22. Гераськин С.А., Фесенко С.В., Черняева Л.Г., Санжарова Н.И. Статистические методы анализа эмпирических распределений коэффициентов накопления радионуклидов растениями. Сельскохоз. биология. 1994;(1):130–137. [Geras’kin S.A., Fesenko S.V., Cherniaeva L.G., Sanzharova N.I. Statisticheskie metody analiza empiricheskih raspredeleniy koeffitsientov nakoplenia radionuklidov rasteniyami. Selskohoziaystvennaya biologia. 1994;(1): 130–137. (In Russ.)]
  23. Обручева Н.В., Антипова О.В. Физиология инициации прорастания семян. Физиология растений. 1997;44(2):287–302. [Obrucheva N.V., Antipova O.V. Fiziologia initsiatsii prorastania semian. Fisiologia rasteniy. 1997;44(2):287–302. (In Russ.)]
  24. Bailly C., El-Maarouf-Bouteau H., Corbineau F. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C.R. Biologies. 2008;331:806–814.
  25. Обручева Н.В., Антипова О.В. Запуск роста осевых органов и его подготовка при прорастании семян, находящихся в вынужденном покое. 2. Инициация “кислого” роста в осевых органах семян кормовых бобов. Физиология растений. 1994;41(3):443–447. [Obrucheva N.V., Antipova O.V. Zapusk rosta osevih organov i ego podgotovka pri prorastanii semian nahodiaschihsia v vinuzdennom pokoe. 2. Initsiatsia “kislogo” rosta v osevih organah semian kormovih bobov. Fisiologia rasteniy. 1994;41(3):443–447. (In Russ.)]
  26. Poschenrieder C., Cabot C., Martos S. et al. Do toxic ions induce hormesis in plants? Plant Science. 2013;212:15–25.
  27. Верхотуров В.В. Физиолого-биохимические процессы в зерновках ячменя и пшеницы при их хранении, прорастании и переработке: Автореф. дисс. д-ра биол. наук. М., 2008. 38 с. [Verhoturov V.V. Fisiologo-biohimicheskie protsessi v zernovkah yachmenia i pshenitsi pri ih hranenii prorastanii i pererabotke: Avtoref. Diss. d.b.n. M., 2008. 38 p. (In Russ.)]
  28. Sharma I., Ahmad P. Catalase: a versatile antioxidant in plants. Ahmad P (ed.) Oxidative damage to plants – antioxidant networks and signaling. San Diego: Academic Press, 2014. P. 131–148.
  29. Caverzan A., Passaia G., Rosa S.B. et al. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Gen. Mol. Biol. 2012;35:1011–1019.
  30. Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Botany. 2012. 217037.
  31. Hasanuzzaman M., Bhuyan M.H.M.B., Zulfiqar F. et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants (Basel). 2020;9(8):681.
  32. Soares C., Carvalho M.E.A., Azevedo R.A., Fidalgo F. Plants facing oxidative challenges – a little help from the antioxidant networks. Environ. Experim. Botany. 2019;161:4–25.
  33. Dorion S., Ouellet J.C., Rivoal J. Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites. 2021;11(9):641.
  34. Hasanuzzaman M., Bhuyan M.H.M.B., Anee T.I. et al. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants. 2019;8:384.
  35. Серегин И.В., Иванов В.Б. Физиологические аспекты токсического действия кадмия и свинца на высшие растения. Физиология растений. 2001;48(4):606–630. [Seregin I.V., Ivanov V.B. Fiziologicheskie aspekti toksicheskogo deystvia kadmia i svintsa na visshie rastenia. Fisiologia rasteniy. 2001;48(4):606–630. (In Russ.)]
  36. Patra M., Bhowmik N., Bandopadhyay B., Sharma A. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ. Experim. Botany. 2004;52(3):199–223.
  37. Гераськин С.А., Дикарев В.Г., Удалова А.А., Дикарева Н.С. Влияние комбинированного действия ионизирующего излучения и солей тяжелых металлов на частоту хромосомных аберраций в листовой меристеме ярового ячменя. Генетика. 1996;32(2):279–288. [Geras’kin S.A., Dikarev V.G., Udalova A.A., Dikareva N.S. Vliyanie kombinirovannogo deystvia ioniziruyuschego izluchenia i soley tiazolih metallov na chastotu hromosomnih aberratsiy v listovoy meristeme yarovogo yachmenia. Genetika. 1996;32(2):279–288. (In Russ.)]
  38. Евсеева Т.И., Гераськин С.А., Вахрушева О.М. Оценка вклада факторов радиационной и химической природы в формирование биологических эффектов в популяции горошка мышиного с территории складирования отходов радиевого производства (пос. Водный, Республика Коми). Радиац. биология. Радиоэкология. 2014;54(1):85–96. [Evseeva T.I., Geras’kin S.A., Vahrusheva O.M. Otsenka vklada faktorov radiatsionnoy i himicheskoy prirody v formirovanie biologicheskih effectov v populiatsii goroshka mishinogo s territorii skladirovania othodov radievogo proizvodstva (pos. Vodniy, Rspublika Komi). Radiatsionnaya biologia. Radioecologia. 2014;54(1):85–96. (In Russ.)]
  39. Micieta K., Murin G. Three species of genus Pinus suitable as bioindicators of polluted environment. Water Air Soil Pollution. 1998;104:413–422.
  40. Streffer C., Bolt H., Follesdal D. et al. Low dose exposures in the environment. Dose-effect relations and risk evaluation. Berlin–Heidelberg: Springer-Verlag, 2004. 471 p.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Conditions for barley germination using the roll method for biochemical studies (A) and in Petri dishes for cytogenetic analysis (B).

下载 (78KB)
3. Fig. 2. Catalase activity in shoots (A) and roots (B) of 7-day-old barley seedlings after separate and combined effects of γ-radiation and lead. * Significant relative to control, p < 0.05, Mann–Whitney U-test.

下载 (36KB)
4. Fig. 3. Activity of ascorbate peroxidase in shoots (A) and roots (B) of 7-day-old barley seedlings after separate and combined effects of γ-radiation and lead. * Significant relative to control, p < 0.05, Mann–Whitney U-test. + Significant relative to the combined effect of factors, p < 0.05, Mann–Whitney U-test.

下载 (36KB)
5. Fig. 4. Activity of guaiacol peroxidase in shoots (A) and roots (B) of 7-day-old barley seedlings after separate and combined effects of γ-radiation and lead.

下载 (33KB)
6. Fig. 5. Concentrations of ascorbic acid in shoots (A) and roots (B) of 7-day-old barley seedlings after separate and combined effects of γ-radiation and lead. * Significant relative to control, p < 0.05, Mann–Whitney U-test. + Significant relative to irradiated plants, p < 0.05, Mann–Whitney U-test.

下载 (41KB)
7. Fig. 6. Concentrations of oxidized glutathione in shoots (A) and roots (B) of 7-day-old barley seedlings after separate and combined effects of γ-radiation and lead. ▼ Significant relative to irradiated plants, p < 0.05, Mann–Whitney U-test.

下载 (38KB)
8. Fig. 7. Concentrations of reduced glutathione in sprouts (A) and roots (B) of 7-day-old barley seedlings after separate and combined exposure to γ-radiation and lead. * Significant relative to control, p < 0.05, Mann–Whitney U-test. ▼ Significant relative to irradiated plants, p < 0.05, Mann–Whitney U-test.

下载 (32KB)
9. Fig. 8. Concentrations of MDA in shoots (A) and roots (B) of 7-day-old barley seedlings after separate and combined effects of γ-radiation and lead. * Significant relative to control, p < 0.05, Mann–Whitney U-test. ▼ Significant relative to irradiated plants, p < 0.05, Mann–Whitney U-test.

下载 (34KB)
10. Fig. 9. Seed germination (A) and mitotic index in cells of the root meristem of barley seedlings (B) on the 7th day of germination after separate and combined action of γ-radiation and lead salt. * Difference from control is statistically significant, p < 0.05.

下载 (43KB)

版权所有 © Russian Academy of Sciences, 2025