Choline deficiency in the body, clinical manifestations and long-term consequences

Cover Page

Cite item

Abstract

Choline, a substance essential for the existence of any organism, is the basis for the synthesis of phosphatidylcholine and sphingomyelin, the two main phospholipids of cell membranes. Acetylcholine is the main neurotransmitter of the parasympathetic nervous system, i.e. part of the autonomic nervous system. It affects smooth muscles, vascular wall tone, heart rate and regulates metabolism as a source of methyl groups. Choline enters the body through food and is partially synthesized endogenously. Choline plays an important role in gene expression, cell membrane signalling, lipid transport and metabolism, and early infant brain development. Choline deficiency increases the risk of cardiovascular and metabolic disorders. Current scientific evidence suggests a negative effect of choline deficiency on the development of non-alcoholic fatty liver disease. Choline deficiency is associated with impaired memory, concentration, and cognitive functions. This article deals with the mechanisms of choline influence on the organism and possibility of choline deficiency correction in the organism.

Full Text

Restricted Access

About the authors

Irina N. Zakharova

Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0003-4200-4598

D. Sci. (Med.), Prof.

Russian Federation, Moscow

Irina V. Berezhnaya

Russian Medical Academy of Continuous Professional Education

Email: berezhnaya-irina26@yandex.ru
ORCID iD: 0000-0002-2847-6268

Cand. Sci. (Med.)

Russian Federation, Moscow

Aleksandra I. Sgibneva

Russian Medical Academy of Continuous Professional Education

Email: asgibneva470@gmail.com

Resident

Russian Federation, Moscow

References

  1. Наумов А.В. Роль нарушений процессов метилирования и обмена метионина в патогенезе заболеваний человека. Журнал ГрГМУ. 2007;1(1):4-7 [Naumov AV. Rol' narushenii protsessov metilirovaniia i obmena metionina v patogeneze zabolevanii cheloveka. Zhurnal GrGMU. 2007;1(1):4-7 (in Russian)].
  2. Наумов А.В., Данильчик И.В., Сарана Ю.В. Три пути реметилирования гомоцистеина. Журнал ГрГМУ. 2016;2(54):27-2 [Naumov AV, Danil'chik IV, Sarana IuV. Tri puti remetilirovaniia gomotsisteina. Zhurnal GrGMU. 2016;2(54):27-2 (in Russian)].
  3. Sebrell WH, Harris RS, Alam SQ. The vitamins. N. Y. – L.: Аcademic Press, 1971.
  4. Strecker A. Üeber einige neue bestandtheile der schweinegalle. Justus Liebigs Ann Chem. 1862;123(3):353-60. doi: 10.1002/jlac.18621230310
  5. Sourkes TL. The discovery of lecithin, the first phospholipid. Bulletin of History of Chemistry. 2004;29(1):9-15.
  6. Da Costa KA, Niculescu MD, Craciunescu CN, et al. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans. Am J Clin Nutr. 2006;84(1):88-94.
  7. Филькин C.Ю., Липкин А.В., Федоров А.Н. Суперсемейство фосфолипаз: структура, функции и применение в биотехнологии. Структура, функции. Успехи биологической химии. 2020;60:369-410 [Fil'kin CIu, Lipkin AV, Fedorov AN. Supersemeistvo fosfolipaz: struktura, funktsii i primenenie v biotekhnologii. Struktura, funktsii. Uspekhi biologicheskoi khimii. 2020;60:369-410 (in Russian)].
  8. Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem. 2014;289:22557-66.
  9. Cho JH, Han JS. Phospholipase D and its essential role in cancer. Molecules and Cells. 2017;40:805.
  10. Wonnacott S, Barik J. Nicotinic ACh receptors. Tocris Rev. 2007;28:1-20.
  11. Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov. 2007;6(9):721-33.
  12. Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol. 2008;154(8):1558-71.
  13. Carvalho FA, Mesquita R, Martins-Silva J, Saldanha C. Acetylcholine and choline effects on erythrocyte nitrite and nitrate levels. J Appl Toxicol. 2004;24(6):419-27.
  14. Santos T, Mesquita R, Martins E, et al. Effects of choline on hemorheological properties and NO metabolism of human erythrocytes. Clin Hemorheol Microcirc. 2003;29(1):41-51.
  15. Söderman A, Mikkelsen JD, West MJ, et al. Activation of nicotinic α 7 acetylcholine receptor enhances long term potentation in wild type mice but not in APP swe/PS1ΔE9 mice. Neurosci Let. 2011;487(3):325-9.
  16. Макотрова Т.А. Роль α7 никотиновых ацетилхолиновых рецепторов в фармакотерапии нейродегенеративных заболеваний. Журнал неврологии и психиатрии им. С.С. Корсакова. 2012;112(10):57-9 [Makotrova TA. A role of alpha-7 nicotinic acetylcholine receptors in pharmacotherapy of neurodegenerative diseases. Zhurnal Nevrologii i psikhiatrii imeni S.S. Korsakova. 2012;112(10-2):57-9 (in Russian)].
  17. Наумов А.В. Гомоцистеин. Медико-биологические проблемы. Минск, 2013 [Naumov AV. Gomocistein. Mediko-biologicheskie problemy. Minsk, 2013 (in Russian)].
  18. Torshin IY. Bioinformatics in the post-genomic era: sensing the change from molecular genetics to personalized medicine. NY: Nova Biomedical Books, 2009.
  19. Мичурова М.С., Калашников В.Ю., Смирнова О.М., и др. Роль эндотелиальных прогениторных клеток в развитии осложнений сахарного диабета. Сахарный диабет. 2015;1(1):24-32 [Michurova MC, Kalashnikov VYu, Smirnova OM, et al. Endothelial progenitor cells in diabetes complications. Diabetes mellitus. 2015;18(1):24-32 (in Russian)].
  20. Liao D, Tan H, Hui R, et al. Hyperhomocysteinemia decreases circulating highdensity lipoprotein by inhibiting apolipoprotein A-I Protein synthesis and enhancing HDL cholesterol clearance. Circ Res. 2006;99(6):598-606.
  21. Da Costa KA, Gaffney CE, Fischer LM, Zeisel SH. Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. Am J Clin Nutr. 2005;81(2):440-4.
  22. Chiuve SE, Giovannucci EL, Hankinson SE, et al. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am J Clin Nutr. 2007;86(4):1073-81.
  23. Atkinson W, Slow S, Elmslie J, et al. Dietary and supplementary betaine: effects on betaine and homocysteine concentrations in males. Nutr Metab Cardiovasc Dis. 2009;19(11):767-73.
  24. Biedermann L, Rogler G. Gut microbiota: its role in health and disease. Eur J Pediatr. 2015;174:151-67. doi: 10.1007/s00431-014-2476-2
  25. МР 2.3.1.2432-08 о нормах физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации от 18.12.2008 [MR 2.3.1.2432-08 on the norms of physiological needs for energy and nutrients for various groups of the population of the Russian Federation dated 12/18/2008 (in Russian)].
  26. Wallace TC, Blusztajn JK, Caudill MA, et al. Choline: a neurocognitive essential nutrient of interest to obstetricians and gynecologists. J Diet Suppl. 2019:1-20. doi: 10.1080/19390211.2019.1639875
  27. Biswas S, Giri S. The importance of choline as an essential nutrient and its role in the prevention of various toxicoses. Prague Med Rep. 2015;116:5-15. doi: 10.14712/23362936.2015.40
  28. Subramaniam S, Fletcher C. Trimethylamine N-oxide: breathe new life. Br J Pharm. 2018;175:1344-53. doi: 10.1111/bph.13959
  29. Filiptsev B, Kojic J, Krul J, et al. Betaine in cereal grains and grain-based products. Food. 2018;7:49. doi: 10.3390/foods7040049
  30. Caudill MA. Pre-and postnatal health: Evidence of increased choline needs. J Am Diet Assoc. 2010;110:1198-206. doi: 10.1016/j.jada.2010.05.009
  31. Farias PM, Marcelino G, Santana LF, et al. Minerals in Pregnancy and Their Impact on Child Growth and Development. Molecules. 2020;25:5630. doi: 10.3390/molecules25235630
  32. Borge TC, Aase H, Brantsæter AL, et al. The importance of maternal diet quality during pregnancy on cognitive and behavioural outcomes in children: a systematic review and meta-analysis. BMJ Open. 2017;7:e016777. doi: 10.1136/bmjopen-2017-016777
  33. Banfleet CL, Strupp BJ, Caudill MA, Canfield RL. Prenatal Choline Supplement Improves Baby's Sustained Attention: A 7-Year Follow-Up Randomized Controlled Feeding Trial. FASEB J. 2022;36:e22054. doi: 10.1096/fj.202101217R
  34. Caudill MA, Strupp BJ, Muscalu L, et al. Maternal Choline Supplementation During the Third Trimester of Pregnancy Improves Infant Information Processing Speed: A Randomized, Double-Blind, Controlled Feeding Trial. FASEB J. 2018;32(4):2172-80.
  35. Аведисова А.С. Терапия астенических состояний. Фармацевтический вестник. 2003;282:15-6 [Avedisova AS. Terapiia astenicheskikh sostoianii. Farmatsevticheskii vestnik. 2003;282:15-6 (in Russian)].

Supplementary files

Supplementary Files
Action
1. Fig. 1. Simplified scheme of choline metabolism.

Download (110KB)
2. Fig. 2. S-adenosylmethionine molecule is involved in homocysteine digestion in a cascade with vitamin B12, folic acid and B6.

Download (106KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies