Formation of the infant's intestinal microbiota depending on the delivery method: long-term consequences and correction options: A review

Cover Page

Cite item


Many studies have been devoted to human microbiome. It has been shown that the microbiome has a significant effect on almost all the vital functions of the host organism. The article addresses the role of various factors in newborns' intestinal microbiota formation. The main emphasis was on the delivery method since the intestinal microbiota of children born via vaginal delivery differs from those born by cesarean section. The microbiota of the mother's intestine and vagina greatly influences the formation of the intestinal microbiome. The delivery method affects not only the formation of the intestinal microbiota but also, indirectly, the development of the newborn's immune system. Changes in the intestinal microbiota associated with surgical delivery probably affect the formation of a newborn infant's immune system. Lack of colonization by the mother's flora during delivery may contribute to a greater risk of infectious and non-communicable diseases. Correcting the microbiota of children born by cesarean section using probiotics (mono- or multistrain probiotics) is essential. When prescribing a probiotic, it is important to choose a well-studied strain shown to be safe, with a positive experience in newborns, and approved for use in children from birth.

Full Text

Restricted Access

About the authors

Olga V. Dedikova

Russian Medical Academy of Continuous Professional Education

Author for correspondence.
ORCID iD: 0000-0002-3335-7124

Department Applicant

Russian Federation, Moscow

Irina N. Zakharova

Russian Medical Academy of Continuous Professional Education

ORCID iD: 0000-0003-4200-4598

D. Sci. (Med.), Prof.

Russian Federation, Moscow

Anastasiya E. Kuchina

Russian Medical Academy of Continuous Professional Education

ORCID iD: 0000-0002-8998-264X

Graduate Student

Russian Federation, Moscow

Irina V. Berezhnaya

Russian Medical Academy of Continuous Professional Education

ORCID iD: 0000-0002-2847-6268

Cand. Sci. (Med.)

Russian Federation, Moscow

Narine G. Sugian

Russian Medical Academy of Continuous Professional Education

ORCID iD: 0000-0002-2861-5619

Cand. Sci. (Med.)

Russian Federation, Moscow


  1. Microbiome. Dictionary. Merriam-Webster. Available at: Accessed: 13.12.2022.
  2. Mohr JL. Protozoa as indicators of pollution. The Scientific Monthly. 1952.
  3. Romano-Keeler J, Weitkamp JH. Maternal influences on fetal microbial colonization and immune development. Pediatr Res. 2015;77(1-2):189-95.
  4. Chiu CY, Chan YL, Tsai YS, et al. Airway microbial diversity is inversely associated with mite-sensitized rhinitis and asthma in early childhood. Sci Rep. 2017;7(1):1820.
  5. Damgaard C, Magnussen K, Enevold C, et al. Viable bacteria associated with red blood cells and plasma in freshly drawn blood donations. PLoS One. 2015;10(3):e0120826.
  6. Aagaard K, Ma J, Antony KM, et al. The Placenta Harbors a Unique Microbiome. Sci Transl Med. 2014;6(237):237ra65.
  7. Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut. 2019;68(6):1108-14. doi: 10.1136/gutjnl-2018-317503
  8. Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351(6279):1296-302.
  9. Yao Y, Cai X, Ye Y, et al. The Role of Microbiota in Infant Health: From Early Life to Adulthood. Front Immunol. 2021;12:708472. doi: 10.3389/fimmu.2021.708472
  10. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332-45. doi: 10.1016/j.cell.2016.05.041
  11. Tan J, McKenzie C, Potamitis M, et al. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;121:91-119. doi: 10.1016/B978-0-12-800100-4.00003-9
  12. Keski-Nisula L, Kyynarainen HR, Karkkainen U, et al. Maternal intrapartum antibiotics and decreased vertical transmission of Lactobacillus to neonates during birth. Acta Paediatr. 2013;102(5):480-5. doi: 10.1111/apa.12186
  13. Stokholm J, Schjorring S, Eskildsen CE, et al. Antibiotic use during pregnancy alters the commensal vaginal microbiota. Clin Microbiol Infect. 2014;20(7):629-35. doi: 10.1111/1469-0691.12411
  14. Zhou P, Zhou Y, Liu B, et al. Perinatal Antibiotic Exposure Affects the Transmission Between Maternal and Neonatal Microbiota and Is Associated With Early-Onset Sepsis. mSphere. 2020;5(1):e00984-19. doi: 10.1128/mSphere.00984-19
  15. Qin S, Liu Y, Wang S, et al. Distribution Characteristics of intestinal Microbiota During Pregnancy and Postpartum in Healthy Women. J Matern Fetal Neonatal Med. 2022;35(15):2915-22. doi: 10.1080/14767058.2020.1812571
  16. Dunn AB, Jordan S, Baker BJ, Carlson NS. The Maternal Infant Microbiome: Considerations for Labor and Birth. MCN Am J Matern Child Nurs. 2017;42(6):318-25. doi: 10.1097/NMC.0000000000000373
  17. Korpela K, de Vos WM. Early life colonization of the human gut: microbes matter everywhere. Curr Opin Microbiol. 2018;44:70-8.
  18. Reddel S, Pascucci GR, Foligno S, et al. A Parallel Tracking of Salivary and Gut Microbiota Profiles Can Reveal Maturation and Interplay of Early Life Microbial Communities in Healthy Infants. Microorganisms. 2022;10(2):468. doi: 10.3390/microorganisms10020468
  19. Korpela K. Impact of Delivery Mode on Infant Gut Microbiota. Ann Nutr Metab. 2021;1-9. doi: 10.1159/000518498
  20. Stewart CJ, Ajami NJ, O’Brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583-8. doi: 10.1038/s41586-018-0617-x
  21. Arboleya S, Suárez M, Fernández N, et al. C-section and the Neonatal Gut Microbiome Acquisition: Consequences for Future Health. Ann Nutr Metab. 2018;73(Suppl. 3):17-23.
  22. Vargas S, Rego S, Clode N. Cesarean Section Rate Analysis in a Tertiary Hospital in Portugal According to Robson Ten Group Classification System. Rev Bras Ginecol Obstet. 2020;42(6):310-5. doi: 10.1055/s-0040-1712127
  23. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539-44.
  24. Korpela K, Zijlmans M, Kuitunen M, et al. Childhood BMI in relation to microbiota in infancy and lifetime antibiotic use. Microbiome. 2017;5(1):26.
  25. Francino MP. Birth mode-related differences in gut microbiota colonization and immune system development. Ann Nutr Metab. 2018;73(Suppl. 3):12-6. doi: 10.1159/000490842
  26. Ratajczak W, Rył A, Mizerski A, et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochimica Polonica. 2019;66(1):1-12. doi: 10.18388/abp.2018_2648
  27. Hemarajata P, Versalovic J. Effects of probiotics on gutmicrobiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol. 2013;6(1):39-51.
  28. La Fata G, Weber P, Mohajeri MH. Probiotics and the gut immune system: indirect regulation. Probiotics Antimicrob Proteins. 2018;10(1):11-21.
  29. Zhang C, Li L, Jin B, et al. The Effects of Delivery Mode on the Gut Microbiota and Health: State of Art. Front Microbiol. 2021;12:724449. doi: 10.3389/fmicb.2021.724449
  30. Palladino E, Van Mieghem T, Connor KL. Diet Rooks MG, Garrett WS. Gut Microbiota, Metabolites and Host Immunity. Nat Rev Immunol. 2016;16(6):341-52. doi: 10.1038/nri.2016.42
  31. Yao Y, Cai X, Fei W, et al. The Role of Short-Chain Fatty Acids in Immunity, Inflammation and Metabolism. Crit Rev Food Sci Nutr. 2022;62(1):1-12. doi: 10.1080/10408398.2020.1854675
  32. Olszak T, An D, Zeissig S, et al. Microbial Exposure During Early Life has Persistent Effects on Natural Killer T Cell Function. Science. 2012;336(6080):489-93. doi: 10.1126/science.1219328
  33. Słabuszewska-Jóźwiak A, Szymański JK, Ciebiera M, et al. Pediatrics Consequences of Caesarean Section–A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2020;17(21):8031. doi: 10.3390/ijerph17218031
  34. Hill C, Guarner F, Reid G, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506-14. doi: 10.1038/nrgastro.2014.66
  35. Garcia Rodenas CL, Lepage M, Ngom-Bru C, et al. Effect of Formula Containing Lactobacillus reuteri DSM 17938 on Fecal Microbiota of Infants Born by Cesarean-Section Randomized Controlled Trial. J Pediatr Gastroenterol Nutr. 2016;63(6):681-7. doi: 10.1097/MPG.0000000000001198
  36. Hurkala J, Lauterbach R, Radziszewska R, et al. Effect of a Short-Time Probiotic Supplementation on the Abundance of the Main Constituents of the Gut Microbiota of Term Newborns Delivered by Cesarean Section – A Randomized, Prospective, Controlled Clinical Trial. Nutrients. 2020;12(10):3128. doi: 10.3390/nu12103128
  37. Yang W, Tian L, Luo J, Yu J. Ongoing Supplementation of Probiotics to Cesarean-Born Neonates during the First Month of Life may Impact the Gut Microbial. Am J Perinatol. 2021;38(11):1181-91. doi: 10.1055/s-0040-1710559
  38. Martín-Peláez S, Cano-Ibáñez N, Pinto-Gallardo M, Amezcua-Prieto C. The Impact of Probiotics, Prebiotics, and Synbiotics during Pregnancy or Lactation on the Intestinal Microbiota of Children Born by Cesarean Section: A Systematic Review. Nutrients. 2022;14(2):341. doi: 10.3390/nu14020341

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74329 от 19.11.2018 г.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies