Formation of the infant's intestinal microbiota depending on the delivery method: long-term consequences and correction options: A review
- Authors: Dedikova O.V.1, Zakharova I.N.1, Kuchina A.E.1, Berezhnaya I.V.1, Sugian N.G.1
-
Affiliations:
- Russian Medical Academy of Continuous Professional Education
- Issue: No 1 (2023)
- Pages: 25-29
- Section: Articles
- URL: https://pediatria.orscience.ru/2658-6630/article/view/472155
- DOI: https://doi.org/10.26442/26586630.2023.1.202092
- ID: 472155
Cite item
Full Text
Abstract
Many studies have been devoted to human microbiome. It has been shown that the microbiome has a significant effect on almost all the vital functions of the host organism. The article addresses the role of various factors in newborns' intestinal microbiota formation. The main emphasis was on the delivery method since the intestinal microbiota of children born via vaginal delivery differs from those born by cesarean section. The microbiota of the mother's intestine and vagina greatly influences the formation of the intestinal microbiome. The delivery method affects not only the formation of the intestinal microbiota but also, indirectly, the development of the newborn's immune system. Changes in the intestinal microbiota associated with surgical delivery probably affect the formation of a newborn infant's immune system. Lack of colonization by the mother's flora during delivery may contribute to a greater risk of infectious and non-communicable diseases. Correcting the microbiota of children born by cesarean section using probiotics (mono- or multistrain probiotics) is essential. When prescribing a probiotic, it is important to choose a well-studied strain shown to be safe, with a positive experience in newborns, and approved for use in children from birth.
Keywords
Full Text

About the authors
Olga V. Dedikova
Russian Medical Academy of Continuous Professional Education
Author for correspondence.
Email: olga.dedikova74@yandex.ru
ORCID iD: 0000-0002-3335-7124
Department Applicant
Russian Federation, MoscowIrina N. Zakharova
Russian Medical Academy of Continuous Professional Education
Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0003-4200-4598
D. Sci. (Med.), Prof.
Russian Federation, MoscowAnastasiya E. Kuchina
Russian Medical Academy of Continuous Professional Education
Email: kuchina_doc@mail.ru
ORCID iD: 0000-0002-8998-264X
Graduate Student
Russian Federation, MoscowIrina V. Berezhnaya
Russian Medical Academy of Continuous Professional Education
Email: berezhnaya-irina26@yandex.ru
ORCID iD: 0000-0002-2847-6268
Cand. Sci. (Med.)
Russian Federation, MoscowNarine G. Sugian
Russian Medical Academy of Continuous Professional Education
Email: narine6969@mail.ru
ORCID iD: 0000-0002-2861-5619
Cand. Sci. (Med.)
Russian Federation, MoscowReferences
- Microbiome. Dictionary. Merriam-Webster. Available at: http://Merriam-Webster.com. Accessed: 13.12.2022.
- Mohr JL. Protozoa as indicators of pollution. The Scientific Monthly. 1952.
- Romano-Keeler J, Weitkamp JH. Maternal influences on fetal microbial colonization and immune development. Pediatr Res. 2015;77(1-2):189-95.
- Chiu CY, Chan YL, Tsai YS, et al. Airway microbial diversity is inversely associated with mite-sensitized rhinitis and asthma in early childhood. Sci Rep. 2017;7(1):1820.
- Damgaard C, Magnussen K, Enevold C, et al. Viable bacteria associated with red blood cells and plasma in freshly drawn blood donations. PLoS One. 2015;10(3):e0120826.
- Aagaard K, Ma J, Antony KM, et al. The Placenta Harbors a Unique Microbiome. Sci Transl Med. 2014;6(237):237ra65.
- Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut. 2019;68(6):1108-14. doi: 10.1136/gutjnl-2018-317503
- Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351(6279):1296-302.
- Yao Y, Cai X, Ye Y, et al. The Role of Microbiota in Infant Health: From Early Life to Adulthood. Front Immunol. 2021;12:708472. doi: 10.3389/fimmu.2021.708472
- Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332-45. doi: 10.1016/j.cell.2016.05.041
- Tan J, McKenzie C, Potamitis M, et al. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;121:91-119. doi: 10.1016/B978-0-12-800100-4.00003-9
- Keski-Nisula L, Kyynarainen HR, Karkkainen U, et al. Maternal intrapartum antibiotics and decreased vertical transmission of Lactobacillus to neonates during birth. Acta Paediatr. 2013;102(5):480-5. doi: 10.1111/apa.12186
- Stokholm J, Schjorring S, Eskildsen CE, et al. Antibiotic use during pregnancy alters the commensal vaginal microbiota. Clin Microbiol Infect. 2014;20(7):629-35. doi: 10.1111/1469-0691.12411
- Zhou P, Zhou Y, Liu B, et al. Perinatal Antibiotic Exposure Affects the Transmission Between Maternal and Neonatal Microbiota and Is Associated With Early-Onset Sepsis. mSphere. 2020;5(1):e00984-19. doi: 10.1128/mSphere.00984-19
- Qin S, Liu Y, Wang S, et al. Distribution Characteristics of intestinal Microbiota During Pregnancy and Postpartum in Healthy Women. J Matern Fetal Neonatal Med. 2022;35(15):2915-22. doi: 10.1080/14767058.2020.1812571
- Dunn AB, Jordan S, Baker BJ, Carlson NS. The Maternal Infant Microbiome: Considerations for Labor and Birth. MCN Am J Matern Child Nurs. 2017;42(6):318-25. doi: 10.1097/NMC.0000000000000373
- Korpela K, de Vos WM. Early life colonization of the human gut: microbes matter everywhere. Curr Opin Microbiol. 2018;44:70-8.
- Reddel S, Pascucci GR, Foligno S, et al. A Parallel Tracking of Salivary and Gut Microbiota Profiles Can Reveal Maturation and Interplay of Early Life Microbial Communities in Healthy Infants. Microorganisms. 2022;10(2):468. doi: 10.3390/microorganisms10020468
- Korpela K. Impact of Delivery Mode on Infant Gut Microbiota. Ann Nutr Metab. 2021;1-9. doi: 10.1159/000518498
- Stewart CJ, Ajami NJ, O’Brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583-8. doi: 10.1038/s41586-018-0617-x
- Arboleya S, Suárez M, Fernández N, et al. C-section and the Neonatal Gut Microbiome Acquisition: Consequences for Future Health. Ann Nutr Metab. 2018;73(Suppl. 3):17-23.
- Vargas S, Rego S, Clode N. Cesarean Section Rate Analysis in a Tertiary Hospital in Portugal According to Robson Ten Group Classification System. Rev Bras Ginecol Obstet. 2020;42(6):310-5. doi: 10.1055/s-0040-1712127
- Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539-44.
- Korpela K, Zijlmans M, Kuitunen M, et al. Childhood BMI in relation to microbiota in infancy and lifetime antibiotic use. Microbiome. 2017;5(1):26.
- Francino MP. Birth mode-related differences in gut microbiota colonization and immune system development. Ann Nutr Metab. 2018;73(Suppl. 3):12-6. doi: 10.1159/000490842
- Ratajczak W, Rył A, Mizerski A, et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochimica Polonica. 2019;66(1):1-12. doi: 10.18388/abp.2018_2648
- Hemarajata P, Versalovic J. Effects of probiotics on gutmicrobiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol. 2013;6(1):39-51.
- La Fata G, Weber P, Mohajeri MH. Probiotics and the gut immune system: indirect regulation. Probiotics Antimicrob Proteins. 2018;10(1):11-21.
- Zhang C, Li L, Jin B, et al. The Effects of Delivery Mode on the Gut Microbiota and Health: State of Art. Front Microbiol. 2021;12:724449. doi: 10.3389/fmicb.2021.724449
- Palladino E, Van Mieghem T, Connor KL. Diet Rooks MG, Garrett WS. Gut Microbiota, Metabolites and Host Immunity. Nat Rev Immunol. 2016;16(6):341-52. doi: 10.1038/nri.2016.42
- Yao Y, Cai X, Fei W, et al. The Role of Short-Chain Fatty Acids in Immunity, Inflammation and Metabolism. Crit Rev Food Sci Nutr. 2022;62(1):1-12. doi: 10.1080/10408398.2020.1854675
- Olszak T, An D, Zeissig S, et al. Microbial Exposure During Early Life has Persistent Effects on Natural Killer T Cell Function. Science. 2012;336(6080):489-93. doi: 10.1126/science.1219328
- Słabuszewska-Jóźwiak A, Szymański JK, Ciebiera M, et al. Pediatrics Consequences of Caesarean Section–A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2020;17(21):8031. doi: 10.3390/ijerph17218031
- Hill C, Guarner F, Reid G, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506-14. doi: 10.1038/nrgastro.2014.66
- Garcia Rodenas CL, Lepage M, Ngom-Bru C, et al. Effect of Formula Containing Lactobacillus reuteri DSM 17938 on Fecal Microbiota of Infants Born by Cesarean-Section Randomized Controlled Trial. J Pediatr Gastroenterol Nutr. 2016;63(6):681-7. doi: 10.1097/MPG.0000000000001198
- Hurkala J, Lauterbach R, Radziszewska R, et al. Effect of a Short-Time Probiotic Supplementation on the Abundance of the Main Constituents of the Gut Microbiota of Term Newborns Delivered by Cesarean Section – A Randomized, Prospective, Controlled Clinical Trial. Nutrients. 2020;12(10):3128. doi: 10.3390/nu12103128
- Yang W, Tian L, Luo J, Yu J. Ongoing Supplementation of Probiotics to Cesarean-Born Neonates during the First Month of Life may Impact the Gut Microbial. Am J Perinatol. 2021;38(11):1181-91. doi: 10.1055/s-0040-1710559
- Martín-Peláez S, Cano-Ibáñez N, Pinto-Gallardo M, Amezcua-Prieto C. The Impact of Probiotics, Prebiotics, and Synbiotics during Pregnancy or Lactation on the Intestinal Microbiota of Children Born by Cesarean Section: A Systematic Review. Nutrients. 2022;14(2):341. doi: 10.3390/nu14020341
