Influence of vitamin D on the immune response of the organism


Cite item

Full Text

Abstract

A literature review is devoted to the effect of vitamin D on the body's immune response. Studies show that vitamin D is able to inhibit the synthesis of pro-inflammatory cytokines, and, as a result, play an important role in the formation of immune tolerance, which is important in infectious, autoimmune diseases and in patients after organ transplantation. Vitamin D can be used both as a prophylaxis and for therapeutic purposes for infectious diseases, in oncohematology, allergology, gastroenterology, and can also affect the intrauterine development of the fetus and the immune response of the newborn, reducing the risk of pregnancy pathology, risks of premature birth and placenta pathology, as well as reducing the frequency, severity and risk of adverse outcome in newborns with congenital and acquired infectious diseases. In the postnatal period, normal provision with vitamin D not only reduces the frequency, but also prevents the formation of severe forms of autoimmune, allergic diseases in children and adolescents.

Full Text

Restricted Access

About the authors

Irina N. Zakharova

Russian Medical Academy of Continuous Professional Education

Email: zakharova-rmapo@yandex.ru

Stanislav V. Maltsev

Russian Medical Academy of Continuous Professional Education

Andrei L. Zaplatnikov

Russian Medical Academy of Continuous Professional Education

Leonid Ya. Klimov

Stavropol State Medical University

Aleksandr N. Pampura

Pirogov Russian National Research Medical University

Viktoriia A. Kuryaninova

Stavropol State Medical University

Irina V. Berezhnaya

Russian Medical Academy of Continuous Professional Education

Ekaterina D. Zhdakaeva

Russian Medical Academy of Continuous Professional Education

Mariia A. Simakova

Russian Medical Academy of Continuous Professional Education

Anna N. Tsutsaeva

Stavropol State Medical University

Svetlana V. Dolbnya

Stavropol State Medical University

Natalia E. Verisokina

Stavropol State Medical University

Anatolii A. Krushelnitsky

Shchyolkovo Perinatal Center

Anastasiia V. Makhaeva

Children's City Clinic №140

Dmitrii A. Sychev

Russian Medical Academy of Continuous Professional Education

References

  1. Vinood B. Patel. Molecular Nutrition. Vitamins. Academic Press, 2020. doi: 10.1016/C2016-0-02103-4
  2. Holick MF, Garabedia M. Vitamin D: photobiology, metabolism, mechanism of action, and clinical applications. Primer on the Metabolic Bone diseases and disorders of Mineral Metabolism ed. by M.J. Favus. sixth edition. Chapter 17. Washington, DC: American society for Bone and Mineral Research, 2006; p. 129-37.
  3. Мальцев С.В., Рылова Н.В. Витамин D и иммунитет. Практическая медицина. 2015; 86 (1): 114-20.
  4. Захарова И.Н., Климов ЛЯ., Касьянова А.Н. и др. Современные представления об иммунотропных эффектах витамина D. Вопросы практической педиатрии. 2019; 14 (1): 7-17. doi: 10.20953/1817-7646-2019-1-7-17
  5. Barragan M, Good M, Kolls JK. Regulation of Dendritic Cell Function by Vitamin D. Nutrients 2015; 7 (9): 8127-51. doi: 10.3390/nu7095383
  6. Barker T, Rogers VE, Levy M et al. Supplemental vitamin D increases serum cytokines in those with initially low 25-hydroxyvitamin D: a randomized, double blind, placebo-controlled study. Cytokine 2015; 71: 132-8. doi: 10.1016/j.cyto.2014.09.012
  7. Agraz-Cibriana JM, Giraldob DM, Urcuqui-Inchimab S. 1,25-dihydroxyvitamin D3 induces formation of neutrophil extracellular trap-like structures and modulates the transcription of genes whose products are neutrophil extracellular trap-associated proteins: A pilot study. Steroids 2019; 141 (January): 14-22. doi: 10.1016/j.steroids.2018.11.001
  8. Corripio-Miyar Y, Mellanby RJ, Morrison K, McNeilly TN. 1,25-dihydroxyvitamin D3 modulates the phenotype and function of monocyte derived dendritic cells in cattle. BMC Vet Res 2017; 13 (1): 390. doi: 10.1186/s12917-017-1309-8
  9. Захарова И.Н., Климов ЛЯ., Касьянова А.Н. и др. Роль антимикробных пептидов и витамина D в формировании противоинфекционной защиты. Педиатрия. Журнал им. Г.Н. Сперанского. 2017; 96 (4): 171-9.
  10. Захарова И.Н., Цуцаева А.Н., Климов ЛЯ. и др. Витамин D и продукция дефен-зинов у детей раннего возраста. Мед. совет. 2020; 1: 158-69. doi: 10.21518/2079-701X-2020-1-158-169
  11. Абатуров А.Е. Катионные антимикробные пептиды системы неспецифической защиты респираторного тракта: дефензины и кателицидины. Дефен-зины - молекулы, переживающие ренессанс (часть 1). Здоровье ребенка. 2011; 7: 161-71.
  12. Agier J, Brzezinska-Blaszczyk E. Cathelicidins and defensins regulate mast cell antimicrobial activity. Postepy Hig Med Dosw (Online) 2016; 70 (0): 618-36. doi: 10.5604/17322693.1205357
  13. Yegorov S, Bromage S, Boldbaatar N, Ganmaa D. Effects of vitamin D supplementation and seasonality on circulating cytokines in adolescents: analysis of data from a feasibility trial in Mongolia. Nutr Immunol 2019; 6: 166. doi: 10.3389/fnut.2019.00166
  14. Esche C, Stellato C, Beck LA. Chemokines: key players in innate and adaptive immunity J Invest Dermatol 2005; 125: 615-28. doi: 10.1111/j.0022-202X. 2005.23841.x
  15. Chambers ES, Suwannasaen D, Mann EH et al. 1a,25-dihydroxyvitamin D3 in combination with transforming growth factor-b increases the frequency of Foxp3 regulatory T cells through preferential expansion and usage of interleukin-2. Immunology 2014; 143 (1): 52-60. doi: 10.1111/imm.12289
  16. Chen S, Lee LF, Fisher TS et al. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res 2015; 3 (2): 149-60. doi: 10.1158/2326-6066
  17. Fakhoury MA, Kvietys PR, Kattan WA et al. Vitamin D and intestinal homeostasis: barrier, microbiota, and immune modulation. J Steroid Biochem Mol Biol 2020; 200: 105663. doi: 10.1016/j.jsbmb.2020.105663
  18. Cantorna MT, Rogers CJ, Arora J. Aligning the paradoxical role of vitamin D in gastrointestinal immunity. Trends Endocrinol Metab 2019; 30 (7): 459-66. doi: 10.1016/j.tem.2019.04.005
  19. Boubali S, Liopeta K, Virgilio L et al. Calcium/calmodulin-dependent protein kinase II regulates IL-10 production by human T lymphocytes: a distinct target in the calcium dependent pathway. Molec Immunol 2012; 52: 51-60. doi: 10.1016/j.mo-limm.2012.04.008
  20. Amirzada M, Jin J. Therapeutic applications of interleukin 24 (IL24). Trop J Pharm Res 2012; 11 (6): 1023-7. doi: 10.4314/tjpr.v11i6.20
  21. Zhu Y, Mahon B, Froicu M, Cantorna M. Calcium and 1a,25-dihydroxyvitamin D3 target the TNF-a pathway to suppress experimental inflammatory bowel disease. Eur J Immunol 2005; 35: 217-24. doi: 10.1002/eji.200425491
  22. Ananthakrishnan AN, Khalili H, Higuchi LM et al. Higher predicted vitamin D status is associated with reduced risk of Crohn’s disease. Gastroenterology 2012; 142 (3): 482-9. doi: 10.1053/j.gastro.2011.11.040
  23. Ananthakrishnan AN, Cheng SC, Cai T et al. Association between reduced plasma 25- hydroxy vitamin D and increased risk of cancer in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol 2014; 12 (5): 821-7. doi: 10.1016/j.cgh.2013.10.011
  24. Linnemana Z, Reisa C, Balajib K et al. The vitamin D positive feedback hypothesis of inflammatory bowel diseases. Medical Hypotheses 2019; 127: 154-8. doi: 10.1016/j.mehy.2019.04.005.9
  25. Hanauer SВ. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 2006; 12 (1): 3-9. doi: 10.1097/01.mib.0000195385.19268.68
  26. Потрохова Е.А., Соботюк Н.В., Бочанцев С.В., Гапоненко В.П. Витамин D и аутоиммунные заболевания. Рос. вестн. перинатологии и педиатрии. 2017; 62 (1): 26- 32. doi: 10.21508/1027-4065-2017-62-1-26-32
  27. Meeker S, Seamons A, Maggio-Price L, Paik J. Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J Gastroenterol 2016; 22 (3): 933-48. doi: 10.3748/wjg.v22.i3.933
  28. Raman M, Milestone AN, Walters JR et al. Vitamin D and gastrointestinal diseases: inflammatory bowel disease and colorectal cancer. Therap Adv Gastroenterol 2011;
  29. (1): 49-62. doi: 10.1177/1756283X10377820
  30. Holick MF Vitamin D deficiency. N Engl J Med 2007; 357: 266-81. doi: 10.1056/NEJMra070553
  31. Dunn JA, Jefferson K, MacDonald D et al. Low serum 25-hydroxyvitamin D is associated with increased bladder cancer risk: A systematic review and evidence of a potential mechanism. J Steroid Biochem Mol Biol 2019; 188: 134-40. doi: 10.1016/j.jsbmb.2019.01.002
  32. Arain A, Matthiesen C. Vitamin D deficiency and graft-versus-host disease in hematopoietic stem cell transplant population. Hematol Oncol Stem Cell Therapy 2019; 12 (3): 133-9. doi: 10.1016/j.hemonc. 2018. 08.001
  33. Ros-Soto J, Snowden JA, Salooja N et al. Transplant complications Working Party of the EBMT. Current practice in vitamin D management in allogeneic hematopoietic stem cell transplantation: asurvey by the transplant Complications Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2019; 25 (10): 2079-85. doi: 10.1016/j.bbmt.2019.06.015
  34. Sproat L, Bolwell B, Rybicki L et al. Vitamin D level after allogeneic hematopoietic stem cell transplant. Biol Blood Marrow Transplant 2011; 17: 1079-83. doi: 10.1016/j.bbmt.2010.12.704
  35. Gargari BN, Behmanesh M, Farsani Z et al. Vitamin D supplementation up-regulates IL-6 and IL-17A gene expression in multiple sclerosis patients. International Immunopharmacology. 2015; 28 (1): 414-9. doi: 10.1016/j.intimp.2015.06.033
  36. Murdaca G, Tonacci A, Negrini S et al. Emerging role of vitamin D in autoimmune diseases: An update on evidence and therapeutic implications. Autoimmunity Rev 2019; 18 (9): 102350. doi: 10.1016/j.autrev.2019.102350
  37. Li D, Jeffery LE, Jenkinson C et al. Serum and synovial fluid vitamin D metabolites and rheumatoid arthritis. J Steroid Biochem Mol Biol 2019; 187: 1-8. doi: 10.1016/j.jsbmb.2018.10.008
  38. Velaphi SC, Izu A, Madhi SA, Pettifor JM. Maternal and neonatal vitamin D status at birth in black South Africans. S Afr Med J 2019; 109 (10): 807-13. doi: 10.7196/SAMJ.2019.v109i10.13651
  39. Mansur JL. Vitamin D in pediatrics, pregnancy and lactation. Arch Argent Pediatr 2018; 116 (4): 286-90. doi: 10.5546/aap.2018.286
  40. Morris SK, Pell LG, Rahman MZ et al. Maternal vitamin D supplementation during pregnancy and lactation to prevent acute respiratory infections in infancy in Dhaka, Bangladesh (MDARI trial): protocol for a prospective cohort study nested within a randomized controlled trial. BMC Pregnancy Childbirth 2016; 16 (1): 110. doi: 10.1186/s12884-016-1103-9
  41. Захарова И.Н., Курьянинова В.А., Верисокина Н.Е. и др. Витамин D и провоспа-лительные цитокины у новорожденных от матерей с эндокринной патологией. Тихоокеанский мед. журн. 2019; 78 (4): 66-9.
  42. Skowronska-Jozwiak E, Lebiedzinska K, Smyczynska J et al. Effects of maternal vitamin D status on pregnancy outcomes, health of pregnant women and their offspring. Neuro Endocrinol Lett 2014; 35 (5): 367-72.
  43. Zhang Q, Chen H, Wang Y et al. Severe vitamin D deficiency in the first trimester is associated with placental inflammation in high-risk singleton pregnancy. Clinical Nutrition 2019; 38 (4): 1921-6. https://doi.org/10.1016/j.clnu.2018.06.978
  44. Saggese G, Vierucci F, Prodam F et al. Vitamin D in pediatric age: consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital J Pediatr 2018; 44 (1): 1-40. doi: 10.1186/s13052-018-0488-7
  45. Meyzer C, Frange P, Chappuy H et al. Vitamin D deficiency and insufficiency in HIV-infected children and young adults. Pediatr Infect Dis J 2013; 32 (11): 1240-4.
  46. Rutstein R, Downes A, Zemel B et al. Vitamin D status in children and young adults with perinatally acquired HIV infection. Clin Nutr 2011; 30 (5): 624-8.
  47. Ali A, Cui X, Alexander S, Eyles D. The placental immune response is dysregulated developmentally vitamin D deficient rats: relevance to autism. J Steroid Biochem Mol Biol 2018; 180: 73-80. doi: 10.1016/j.jsbmb.2018.01.015
  48. Dinlen N, Zenciroglu A, Beken S et al. Association of vitamin D deficiency with acute lower respiratory tract infections in newborns. J Matern Fetal Neonatal Med 2016; 29 (6): 928-32. doi: 10.3109/14767058.2015.1023710
  49. Hornsb E, Pfeffer PE, Laranjo N et al. Vitamin D supplementation during pregnancy: Effect on the neonatal immune system in a randomized controlled trial. J Allergy Clin Immunol 2018; 141 (1): 269-78. https://doi.org/10.1016/j.jaci.2017.02.039
  50. Munkhbayarlakh S, Kao H, Hou Y et al. Vitamin D plasma concentration and vitamin D receptor genetic variants confer risk of asthma: A comparison study of Taiwanese and Mongolian populations. World Allergy Organization J 2019; 12 (11): 100076. doi: 10.1016/j.waojou.2019.100076
  51. Huang Y, Wang L, Jia X et al. Vitamin D alleviates airway remodeling in asthma by down-regulating the activity of Wnt/b-catenin signaling pathway. Int Immunop-harmacol 2019; 68: 88-94. doi: 10.1016/j.intimp.2018.12.061
  52. Yip KH, Kolesnikoff N, Yu C et al. Mechanisms of vitamin D(3) metabolite repression of IgE-dependent mast cell activation. J Allergy Clin Immunol 2014; 133: 1356-64; e1-14. doi: 10.1016/j.jaci.2013.11.030
  53. Matsui T, Tanaka K, Yamashita H et al. Food allergy is linked to season of birth, sun exposure, and vitamin D deficiency. Allergol Int 2019; 68 (2): 172-7. doi: 10.1016/j.alit.2018.12.003
  54. Ramadan A, Sallam SF, Elsheikh MS et al. VDR gene expression in asthmatic children patients in relation to vitamin D status and supplementation. Gene Reports 2019; 15: 100387. doi: 10.1016/j.genrep.2019.100387
  55. Захарова И.Н., Климов Л.Я., Касьянова А.Н. и др. Взаимосвязь инфекционной заболеваемости и недостаточности витамина D: современное состояние проблемы. Инфекционные болезни. 2018; 16 (3): 69-78. doi: 10.20953/1729-92252018-3-69-78
  56. Martineau AR, Jolliffe DA, Hooper RL et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017; 356: i6583. doi: 10.1136/bmj.i6583
  57. Касьянова А.Н. Уровень паратгормона и продукция дефензинов у детей раннего возраста в зависимости от обеспеченности витамином D. Автореф. дис.. канд. мед. наук. Ставрополь, 2019.
  58. Eroglu С, Demir F, Erge D et al. The relation between serum vitamin D levels, viral infections and severity of attacks in children with recurrent wheezing. Allergol Im-munopathol (Madr) 2019; 47 (6): 591-7. doi: 10.1016/j.aller.2019.05.002
  59. Arboleda J, Fernandez G, Urcuqui-Inchima S. Vitamin D-mediated attenuation of miR-155 in human macrophages infected with dengue virus: Implications for the cytokine response. Infection. Genetics Evolution 2019; 69: 12-21. doi: 10.1016/j.meegid.2018.12.033
  60. Bhargava A, Rastogi P, Lal N et al. Relationship between vitamin D and chronic periodontitis. J Oral Biol Craniofacial Res 2019; 9 (2): 177-9. doi: 10.1016/j.jobcr.2018.07.001
  61. Panda S, Tiwari A, Luthra K et al. Status of vitamin D and the associated host factors in pulmonary tuberculosis patients and their household contacts: A cross sectional study. J Steroid Biochem Mol Biol 2019; 193: 105419. doi: 10.1016/j.jsbmb.2019.105419
  62. Cervantes JL, Oak E, Garcia J et al. Vitamin D modulates human macrophage response to Mycobacterium tuberculosis DNA. Tuberculosis 2019; 116 (Suppl.): S131-S137. doi: 10.1016/j.tube.2019.04.021
  63. Xiao D, Zhang X, Ying J et al. Association between vitamin D status and sepsis in children: A meta-analysis of observational studies. Clin Nutr 2019; S0261-5614 (19): 33022-5. doi: 10.1016/j.clnu.2019.08.010
  64. Aguilar-Jimenez W, Zapata W, Rivero-Ju3rez A et al. Genetic associations of the vitamin D and antiviral pathways with natural resistance to HIV-1 infection are influenced by interpopulation variability. Infect Genet Evolution 2019; 73: 276-86. doi: 10.1016/j.meegid.2019.05.014
  65. Li B, Wang M, Zhou L et al. Association between serum vitamin D and chronic rhinosinusitis: a meta-analysis. Braz J Otorhinolaryngol 2019; 3: S1808-8694(19)30114-4. doi: 10.1016/j.bjorl.2019.08.007
  66. Grant WB, Lahore H, McDonnell SL et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12 (4): 988. doi: 10.3390/nu12040988

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74329 от 19.11.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies