Why does it matter to the pediatrician whether the baby was born naturally or by Cesarean section? A review

Cover Page

Cite item

Full Text

Abstract

Cesarean section is one of the most common operations in obstetrics and gynecology. However, despite the widespread use of this procedure, it is associated with certain risks for the mother and the child. As a result of cesarean section (CS), newborns do not acquire some important microorganisms during the passage of the maternal birth canal, which can impact the development and alter the functioning of the microbial ecosystem of the child. The gut microbiota plays an essential role in maintaining human health. It promotes digestion, strengthens the immune system, and produces some vitamins. Recent studies show that the intestinal microbiota of children born with CS differs from that of children born naturally. This article addresses the consequences of this difference on children's health and available ways of correcting the intestinal microbiota composition in children born via CS. Understanding the mechanisms of gut microbiota formation and function in these children can help develop effective strategies to prevent and treat various diseases associated with gut microbiota imbalance.

Full Text

Restricted Access

About the authors

Irina N. Zakharova

Russian Medical Academy of Continuous Professional Education; Bashlyaeva Children’s City Clinical Hospital of the Moscow City Health Care Department

Author for correspondence.
Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0003-4200-4598

Sci. (Med.), Prof.

Russian Federation, Moscow; Moscow

Yana V. Orobinskaya

Russian Medical Academy of Continuous Professional Education; Khimki Central Clinical Hospital

Email: zakharova-rmapo@yandex.ru
ORCID iD: 0009-0005-2121-4010

Graduate Student

Russian Federation, Moscow; Khimki

Irina V. Berezhnaya

Russian Medical Academy of Continuous Professional Education; Bashlyaeva Children’s City Clinical Hospital of the Moscow City Health Care Department

Email: berezhnaya-irina26@yandex.ru
ORCID iD: 0000-0002-2847-6268

Cand. Sci. (Med.)

Russian Federation, Moscow; Moscow

Narine G. Sugian

Russian Medical Academy of Continuous Professional Education; Mommy and Baby Outpatient clinic of Khimki Central Clinical Hospital

Email: narine6969@mail.ru
ORCID iD: 0000-0002-2861-5619

Cand. Sci. (Med.)

Russian Federation, Moscow; Khimki

Olga V. Dedikova

Russian Medical Academy of Continuous Professional Education

Email: olga.dedikova74@yandex.ru
ORCID iD: 0000-0002-3335-7124

pediatrician, Department Applicant

Russian Federation, Moscow

Svetlana I. Malyavskaya

Northern State Medical University

Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0003-2521-0824

Sci. (Med.), Prof.

Russian Federation, Arkhangelsk

Daria M. Kurbakova

Northern State Medical University

Email: dde120600@mail.ru
ORCID iD: 0009-0002-2973-1256

Student

Russian Federation, Arkhangelsk

References

  1. Исенова С.Ш., Бодыков Г.Ж., Кабыл Б.К., и др. Особенности операции кесарева сечения на современном этапе. Вестник КазНМУ. 2019;1:13-16 [Isenova SSh, Bodykov GZh, Kabyl BK, et al. Features of cesarean section at the present stage. Vestnik KazNMU. 2019;1:13-6 (in Russian)].
  2. Antoine C, Young BK. Cesarean section one hundred years 1920-2020: the Good, the Bad and the Ugly. J Perinat Med. 2020;49(1):5-16. doi: 10.1515/jpm-2020-0305
  3. Bhatia M, Banerjee K, Dixit P, Dwivedi LK. Assessment of Variation in Cesarean Delivery Rates Between Public and Private Health Facilities in India from 2005 to 2016. JAMA Netw Open. 2020;3(8): e2015022. doi: 10.1001/jamanetworkopen.2020.15022
  4. Long Q, Kingdon C, Yang F, et al. Prevalence of and reasons for women’s, family members’, and health professionals’ preferences for cesarean section in China: A mixed-methods systematic review. PLoS Med. 2018;15(10): e1002672. doi: 10.1371/journal.pmed.1002672
  5. Yasseen III AS, Bassil K, Sprague A, et al. Late preterm birth and previous cesarean section: a population-based cohort study. J Matern Fetal Neonatal Med. 2019;32(14):2400-7. doi: 10.1080/14767058.2018.1438397
  6. Sotiriadis A, Makrydimas G, Papatheodorou S, et al. Corticosteroids for preventing neonatal respiratory morbidity after elective caesarean section at term. Cochrane Database Syst Rev. 2018;8(8): CD006614. doi: 10.1002/14651858.CD006614.pub3
  7. Bäckhed F, Roswall J, Peng Y, et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe. 2015;17(5):690-703. doi: 10.1016/j.chom.2015.04.004
  8. Koleva PT, Kim JS, Scott JA, Kozyrskyj AL. Microbial programming of health and disease starts during fetal life. Birth Defects Res C Embryo Today. 2015;105(4):265-77. doi: 10.1002/bdrc.21117
  9. Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 2020;16(1):38-51. doi: 10.1080/15548627.2019.1635384
  10. Zhou GQ, Huang MJ, Yu X, et al. Early life adverse exposures in irritable bowel syndrome: new insights and opportunities. Front Pediatr. 2023;11:1241801. doi: 10.3389/fped.2023.1241801
  11. Espírito Santo C, Caseiro C, Martins MJ, et al. Gut Microbiota, in the Halfway between Nutrition and Lung Function. Nutrients. 2021;13(5):1716. doi: 10.3390/nu13051716
  12. Asadi A, Shadab Mehr N, Mohamadi MH, et al. Obesity and gut-microbiota-brain axis: A narrative review. J Clin Lab Anal. 2022;36(5): e24420. doi: 10.1002/jcla.24420
  13. Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin Microbiol Rev. 2022;35(1): e0033820. doi: 10.1128/CMR.00338-20
  14. Vallès Y, Artacho A, Pascual-García A, et al. Microbial succession in the gut: directional trends of taxonomic and functional change in a birth cohort of Spanish infants. PLoS Genet. 2014;10(6): e1004406. doi: 10.1371/journal.pgen.1004406
  15. Ihekweazu FD, Versalovic J. Development of the Pediatric Gut Microbiome: Impact on Health and Disease. Am J Med Sci. 2018;356(5):413-23. doi: 10.1016/j.amjms.2018.08.005
  16. Funkhouser LJ, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 2013;11(8): e1001631. doi: 10.1371/journal.pbio.1001631
  17. Collado MC, Rautava S, Aakko J, et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129. doi: 10.1038/srep23129
  18. DiGiulio DB, Romero R, Amogan HP, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One. 2008;3(8): e3056. doi: 10.1371/journal.pone.0003056
  19. Moore RE, Townsend SD. Temporal development of the infant gut microbiome. Open Biol. 2019;9(9):190128. doi: 10.1098/rsob.190128
  20. Azad MB, Konya T, Maughan H, et al; CHILD Study Investigators. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185(5):385-94. doi: 10.1503/cmaj.121189
  21. Chu DM, Ma J, Prince AL, et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23(3):314-26. doi: 10.1038/nm.4272
  22. Browne HP, Shao Y, Lawley TD. Mother-infant transmission of human microbiota. Curr Opin Microbiol. 2022;69:102173. doi: 10.1016/j.mib.2022.102173
  23. Mold JE, Michaëlsson J, Burt TD, et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science. 2008;322(5907):1562-5. doi: 10.1126/science.1164511
  24. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107(26):11971-5. doi: 10.1073/pnas.1002601107
  25. Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. 2016;16(1):86. doi: 10.1186/s12876-016-0498-0
  26. Zhou P, Manoil D, Belibasakis GN, Kotsakis GA. Veillonellae: Beyond Bridging Species in Oral Biofilm Ecology. Front Oral Health. 2021;2:774115. doi: 10.3389/froh.2021.774115
  27. Hewitt KM, Mannino FL, Gonzalez A, et al. Bacterial diversity in two Neonatal Intensive Care Units (NICUs). PLoS One. 2013;8(1): e54703. doi: 10.1371/journal.pone.0054703
  28. Putignani L, Carsetti R, Signore F, Manco M. Additional maternal and nonmaternal factors contribute to microbiota shaping in newborns. Proc Natl Acad Sci USA. 2010;107(42): E159; author reply E160. doi: 10.1073/pnas.1010526107
  29. Biasucci G, Benenati B, Morelli L, et al; Cesarean delivery may affect the early biodiversity of intestinal bacteria. J Nutr. 2008;138(9):1796S-800S. doi: 10.1093/jn/138.9.1796S
  30. Bokulich NA, Chung J, Battaglia T, et al: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82. doi: 10.1126/scitranslmed.aad7121
  31. Butel MJ, Waligora-Dupriet AJ, Wydau-Dematteis S. The developing gut microbiota and its consequences for health. J Dev Orig Health Dis. 2018;9(6):590-7. doi: 10.1017/S2040174418000119
  32. Salminen S, Gibson GR, McCartney AL, Isolauri E. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut. 2004;53(9):1388-9. doi: 10.1136/gut.2004.041640
  33. Stokholm J, Thorsen J, Chawes BL, et al. Cesarean section changes neonatal gut colonization. J Allergy Clin Immunol. 2016;138(3):881-9.e2. DOIdoi: 10.1016/j.jaci.2016.01.028
  34. Nuriel-Ohayon M, Neuman H, Ziv O, et al. Progesterone increases Bifidobacterium relative abundance during late pregnancy. Cell Rep. 2019;27(3):730-6.e3. doi: 10.1016/j.celrep.2019.03.075
  35. Korpela K, Salonen A, Vepsäläinen O, et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome. 2018;6(1):182. doi: 10.1186/s40168-018-0567-4
  36. Azad MB, Konya T, Persaud RR, et al; CHILD Study Investigators. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG. 2016;123(6):983-93. doi: 10.1111/1471-0528.13601
  37. Korpela K, Helve O, Kolho KL, et al. Maternal Fecal Microbiota Transplantation in Cesarean-Born Infants Rapidly Restores Normal Gut Microbial Development: A Proof-of-Concept Study. Cell. 2020;183(2):324-34.e5. doi: 10.1016/j.cell.2020.08.047
  38. Wilson BC, Butler ÉM, Grigg CP, et al. Oral administration of maternal vaginal microbes at birth to restore gut microbiome development in infants born by caesarean section: A pilot randomised placebo-controlled trial. EBioMedicine. 2021;69:103443. doi: 10.1016/j.ebiom.2021.103443
  39. Yektaei-Karin E, Moshfegh A, Lundahl J, et al. The stress of birth enhances in vitro spontaneous and IL-8-induced neutrophil chemotaxis in the human newborn. Pediatr Allergy Immunol. 2007;18(8):643-51. doi: 10.1111/j.1399-3038.2007.00578.x
  40. Shi X, Ma W, Duan S, et al. Single-cell transcriptional diversity of neonatal umbilical cord blood immune cells reveals neonatal immune tolerance. Biochem Biophys Res Commun. 2022;608:14-22. doi: 10.1016/j.bbrc.2022.03.132
  41. Ly NP, Ruiz-Perez B, Onderdonk AB, et al: Mode of delivery and cord blood cytokines: a birth cohort study. Clin Mol Allergy. 2006;4:13. doi: 10.1186/1476-7961-4–13
  42. Gillis CC, Hughes ER, Spiga L, et al. Dysbiosis-Associated Change in Host Metabolism Generates Lactate to Support Salmonella Growth. Cell Host Microbe. 2018;23(1):54-64.e6. doi: 10.1016/j.chom.2017.11.006
  43. Sevelsted A, Stokholm J, Bønnelykke K, Bisgaard H. Cesarean section and chronic immune disorders. Pediatrics. 2015;135(1): e92-8. doi: 10.1542/peds.2014-0596
  44. Prentice AM. Breastfeeding in the Modern World. Ann Nutr Metab. 2022;78(Suppl. 2):29-38. doi: 10.1159/000524354
  45. Le Doare K, Holder B, Bassett A, Pannaraj PS. Mother’s Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Immunity. Front Immunol. 2018;9:361. doi: 10.3389/fimmu.2018.00361
  46. Stewart CJ, Ajami NJ, O’Brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583-8. doi: 10.1038/s41586-018-0617-x
  47. Vandenplas Y, Berger B, Carnielli VP, et al. Human Milk Oligosaccharides: 2’-Fucosyllactose (2’-FL) and Lacto-N-Neotetraose (LNnT) in Infant Formula. Nutrients. 2018;10(9):1161. doi: 10.3390/nu10091161
  48. Hobbs AJ, Mannion CA, McDonald SW, et al. The impact of caesarean section on breastfeeding initiation, duration and difficulties in the first four months postpartum. BMC Pregnancy Childbirth. 2016;16:90. doi: 10.1186/s12884-016-0876-1
  49. Maharlouei N, Pourhaghighi A, Raeisi Shahraki H, et al. Factors Affecting Exclusive Breastfeeding, Using Adaptive LASSO Regression. Int J Community Based Nurs Midwifery. 2018;6(3):260-71.
  50. Dunn AB, Jordan S, Baker BJ, Carlson NS. The Maternal Infant Microbiome: Considerations for Labor and Birth. MCN Am J Matern Child Nurs. 2017;42(6):318-25. doi: 10.1097/NMC.0000000000000373
  51. Juan J, Zhang X, Wang X, et al. Association between Skin-to-Skin Contact Duration after Caesarean Section and Breastfeeding Outcomes. Children (Basel). 2022;9(11):1742. doi: 10.3390/children9111742
  52. Karimi FZ, Miri HH, Khadivzadeh T, Maleki-Saghooni N. The effect of mother-infant skin-to-skin contact immediately after birth on exclusive breastfeeding: a systematic review and meta-analysis. J Turk Ger Gynecol Assoc. 2020;21(1):46-56. doi: 10.4274/jtgga.galenos.2019.2018.0138
  53. Ulfa Y, Maruyama N, Igarashi Y, Horiuchi S. Early initiation of breastfeeding up to six months among mothers after cesarean section or vaginal birth: A scoping review. Heliyon. 2023;9(6): e16235. doi: 10.1016/j.heliyon.2023.e16235
  54. Lagerberg D, Wallby T, Magnusson M. Differences in breastfeeding rate between mothers delivering by caesarean section and those delivering vaginally. Scand J Public Health. 2021;49(8):899-903. doi: 10.1177/1403494820911788
  55. De Silva D, Halken S, Singh C, et al; European Academy of Allergy, Clinical Immunology Food Allergy, Anaphylaxis Guidelines Group. Preventing food allergy in infancy and childhood: Systematic review of randomised controlled trials. Pediatr Allergy Immunol. 2020;31(7):813-26. doi: 10.1111/pai.13273
  56. Halken S, Muraro A, de Silva D, et al; European Academy of Allergy and Clinical Immunology Food Allergy and Anaphylaxis Guidelines Group. EAACI guideline: Preventing the development of food allergy in infants and young children (2020 update). Pediatr Allergy Immunol. 2021;32(5):843-58. doi: 10.1111/pai.13496
  57. Berseth CL, Johnston WH, Stolz SI, et al. Clinical response to 2 commonly used switch formulas occurs within 1 day. Clin Pediatr (Phila). 2009;48(1):58-65. doi: 10.1177/0009922808321897
  58. De Almagro García MC, Moreno Muñoz JA, Jiménez López J, Rodríguez-Palmero Seuma M. Nuevos ingredientes en fórmulas infantiles. Beneficios sanitarios y funcionales [New ingredients in infant formula. Health and functional benefits]. Nutr Hosp. 2017;34(Suppl. 4):8-12. [Article in Spanish]. doi: 10.20960/nh.1564
  59. Захарова И.Н., Оробинская Я.В., Сугян Н.Г., и др. Олигосахариды грудного молока: что мы знаем о них сегодня? Педиатрия. Consilium Medicum. 2022;3:204-12 [Zakharova IN, Orobinskaia IaV, Sugian NG, et al. Breast milk oligosaccharides: what do we know today? Pediatrics. Consilium Medicum. 2022;3:204-12 (in Russian)]. doi: 10.26442/26586630.2022.3.201851
  60. Reverri EJ, Devitt AA, Kajzer JA, et al. Review of the Clinical Experiences of Feeding Infants Formula Containing the Human Milk Oligosaccharide 2’-Fucosyllactose. Nutrients. 2018;10(10):1346. doi: 10.3390/nu10101346
  61. Goehring KC, Marriage BJ, Oliver JS, et al. Similar to Those Who Are Breastfed, Infants Fed a Formula Containing 2’-Fucosyllactose Have Lower Inflammatory Cytokines in a Randomized Controlled Trial. J Nutr. 2016;146(12):2559-66. doi: 10.3945/jn.116.236919
  62. Ramirez-Farias C, Baggs GE, Marriage BJ. Growth, Tolerance, and Compliance of Infants Fed an Extensively Hydrolyzed Infant Formula with Added 2’-FL Fucosyllactose (2’-FL) Human Milk Oligosaccharide. Nutrients. 2021;13(1):186. doi: 10.3390/nu13010186
  63. Vázquez E, Van den Abbeele P, Marzorati M, Chow JM, Buck R., The Human Milk Oligosaccharide 2´-Fucosyllactose and The Prebiotic scFOS Have Synergistic Effects Modulating the Infant Gut Microbiota. 5th Nutrition & Growth Conference 2018, Paris
  64. Jungersen M, Wind A, Johansen E, et al. The Science behind the Probiotic Strain Bifidobacterium animalis subsp. lactis BB-12(®). Microorganisms. 2014;2(2):92-110. doi: 10.3390/microorganisms2020092
  65. Gazzolo D, Picone S, Gaiero A, et al. Early Pediatric Benefit of Lutein for Maturing Eyes and Brain-An Overview. Nutrients. 2021;13(9):3239. doi: 10.3390/nu13093239
  66. Miranda-Dominguez O, Ramirez JSB, Mitchell AJ, et al. Carotenoids improve the development of cerebral cortical networks in formula-fed infant macaques. Sci Rep. 2022;12(1):15220. doi: 10.1038/s41598-022-19279-1

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74329 от 19.11.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies