The mysterious bifidus factor: A review

封面

如何引用文章

全文:

详细

Breast milk (BM) is a complex biological mixture that comprises fats, proteins, enzymes, antibodies, and other essential nutrients, providing babies with the necessary energy and serving as a crucial immunological barrier. It plays a key role in the development of the gastrointestinal tract microbiota in newborns, which is dominated by Bifidobacterium spp. This selective growth of beneficial bacteria is associated with the presence of oligosaccharides in human milk, which have a prebiotic function. Lack of such beneficial microbial components in children who are not breastfed can lead to impaired gastrointestinal function, making them more susceptible to various infectious agents and diseases. That is why infant formula manufacturers have started experimenting with adding artificially synthesized oligosaccharides to baby food to bring it closer to the BM composition. The next step was the introduction into baby foods of oligosaccharides naturally present in the BM. This approach proved successful: due to the addition of oligosaccharides, the microbiome of children became increasingly similar to that developed during breastfeeding, contributing to the improvement of the health and development of babies. These findings suggest that the oligosaccharides contained in human milk are a bifidus factor. One key component is lacto-N-biose I (LNB), a type I disaccharide that is an important building block of BM oligosaccharides. LNB exhibits potent prebiotic activity, stimulating the growth of various Bifidobacterium strains in the intestine and demonstrating significant potential for use in baby’s nutritional products and supplements. Similarly, artificially synthesized galactooligosaccharides and fucosylated oligosaccharide, 2-fucosyl lactose, structurally homologous to BM oligosaccharide, have an anti-inflammatory effect and are widely used in infant formula, complementing the means to support the health of babies.

全文:

受限制的访问

作者简介

Irina Zakharova

Russian Medical Academy of Continuous Professional Education

编辑信件的主要联系方式.
Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0003-4200-4598

D. Sci. (Med.), Prof.

俄罗斯联邦, Moscow

Narine Sugian

Russian Medical Academy of Continuous Professional Education; Khimki Clinical Hospital

Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0002-2861-5619

Cand. Sci. (Med.)

俄罗斯联邦, Moscow; Khimki

Yana Orobinskaya

Russian Medical Academy of Continuous Professional Education; Khimki Clinical Hospital

Email: zakharova-rmapo@yandex.ru
ORCID iD: 0009-0005-2121-4010

Assistant

俄罗斯联邦, Moscow; Khimki

参考

  1. Wickes IG. A history of infant feeding. I. Primitive peoples; ancient works; Renaissance writers. Arch Dis Child. 1953;28(138):151-8. PMID: 13041294
  2. Боровик Т.Э., Ладодо К.С., Яцык Г.В., и др. Научно-практическая программа «Оптимизация вскармливания детей первого года жизни в Российской Федерации». Педиатрия. Журнал им. Г. Н. Сперанского. 2008;87(4):75-9 [Borovik TE, Ladodo KS, Iatsyk GV, et al. Nauchno-prakticheskaia programma "Optimizatsiia vskarmlivaniia detei pervogo goda zhizni v Rossiiskoi Federatsii". Pediatrics. Journal n.a. G.N. Speransky. 2008;87(4):75-9 (in Russian)].
  3. Martinez FA, Balciunas EM, Converti A, et al. Bacteriocin production by Bifidobacterium spp. A review. Biotechnol Adv. 2013;31(4):482-8. doi: 10.1016/j.biotechadv.2013.01.010
  4. Rašić JL, Kurmann JA. History. In: Bifidobacteria and their role. Experientia Supplementum. Vol. 39. Basel: Birkhäuser, 1983. doi: 10.1007/978-3-0348-5448-1_1
  5. Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology. 2012;22(9):1147-62. doi: 10.1093/glycob/cws074
  6. Urashima T, Asakuma S, Leo F, et al. The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv Nutr. 2012;3(3):473S-82S. doi: 10.3945/an.111.001412
  7. Al-Beltagi M. Human milk oligosaccharide secretion dynamics during breastfeeding and its antimicrobial role: A systematic review. World J Clin Pediatr. 2025;14(2):104797. doi: 10.5409/wjcp.v14.i2.104797
  8. Urashima T, Saito T, Nakamura T, Messer M. Oligosaccharides of milk and colostrum in non-human mammals. Glycoconj J. 2001;18(5):357-71. doi: 10.1023/a:1014881913541
  9. Lewis ZT, Totten SM, Smilowitz JT, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome. 2015;3:13. doi: 10.1186/s40168-015-0071-z
  10. Yuen KCJ, Hjortebjerg R, Ganeshalingam AA, et al. Growth hormone/insulin-like growth factor I axis in health and disease states: An update on the role of intra-portal insulin. Front Endocrinol (Lausanne). 2024;15:1456195. doi: 10.3389/fendo.2024.1456195
  11. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The human microbiome and child growth – First 1000 days and beyond. Trends Microbiol. 2019;27(2):131-47. doi: 10.1016/j.tim.2018.09.008
  12. Charbonneau MR, O'Donnell D, Blanton LV, et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell. 2016;164(5):859-71. doi: 10.1016/j.cell.2016.01.024
  13. Bezirtzoglou E, Maipa V, Chotoura N, et al. Occurrence of Bifidobacterium in the intestine of newborns by fluorescence in situ hybridization. Comp Immunol Microbiol Infect Dis. 2006;29(5-6):345-52. doi: 10.1016/j.cimid.2006.09.002
  14. Korpela K. Impact of delivery mode on infant gut microbiota. Ann Nutr Metab. 2021:1-9. doi: 10.1159/000518498
  15. Ward RE, Niñonuevo M, Mills DA, et al. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl Environ Microbiol. 2006;72(6):4497-9. doi: 10.1128/AEM.02515-05
  16. Saturio S, Nogacka AM, Alvarado-Jasso GM, et al. Role of Bifidobacteria on infant health. Microorganisms. 2021;9(12):2415. doi: 10.3390/microorganisms9122415
  17. Machida S, Saito K, Nishimoto M, Kitaoka M. Production of Lacto-N-biose i using crude extracts of bifidobacterial cells. J Appl Glycosci (1999). 2022;69(2):15-21. doi: 10.5458/jag.jag.JAG-2021_0012
  18. Sakurama H, Kiyohara M, Wada J, et al. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression. J Biol Chem. 2013;288(35):25194-206. doi: 10.1074/jbc.M113.484733
  19. Ojima MN, Jiang L, Arzamasov AA, et al. Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides. ISME J. 2022;16(9):2265-79. doi: 10.1038/s41396-022-01270-3
  20. Khailova L, Dvorak K, Arganbright KM, et al. Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2009;297(5):G940-9. doi: 10.1152/ajpgi.00141.2009
  21. Turroni F, Duranti S, Milani C, et al. Bifidobacterium bifidum: A key member of the early human gut microbiota. Microorganisms. 2019;7(11):544. doi: 10.3390/microorganisms7110544
  22. Wada J, Ando T, Kiyohara M, et al. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol. 2008. 74(13):3996-4004. doi: 10.1128/AEM.00149-08
  23. Xiao JZ, Takahashi S, Nishimoto M, et al. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol. 2010;76(1):54-9. doi: 10.1128/AEM.01683-09
  24. Satoh T, Odamaki T, Namura M, et al. In vitro comparative evaluation of the impact of lacto-N-biose I, a major building block of human milk oligosaccharides, on the fecal microbiota of infants. Anaerobe. 2013;19:50-7. doi: 10.1016/j.anaerobe.2012.12.007
  25. Markowiak-Kopeć P, Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients. 2020;12(4):1107. doi: 10.3390/nu12041107
  26. Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543-7. doi: 10.1038/nature09646
  27. Ríos-Covian D, Langella P, Martín R. From short- to long-term effects of C-section delivery on microbiome establishment and host health. Microorganisms. 2021;9(10):2122. doi: 10.3390/microorganisms9102122
  28. Garro-Aguilar Y, Gulak M, Astigarraga E, Barreda-Gómez G. Breastfeeding: History, techniques, benefits, complications and care. J Pract Prof Nurs. 2022;6:031. doi: 10.24966/PPN-5681/100031
  29. Macfarlane GT, Steed H, Macfarlane S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol. 2008;104(2):305-44. doi: 10.1111/j.1365-2672.2007.03520.x
  30. Tanabe S, Hochi S. Oral administration of a galactooligosaccharide preparation inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. Int J Mol Med. 2010;25(3):331-6. doi: 10.3892/ijmm_00000349
  31. Kong C, Faas MM, de Vos P, Akkerman R. Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier. Food Funct. 2020;11(11):9445-67. doi: 10.1039/d0fo01700k
  32. Shoaf K, Mulvey GL, Armstrong GD, Hutkins RW. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect Immun. 2006;74(12):6920-8. doi: 10.1128/IAI.01030-06
  33. Lemoine A, Tounian P, Adel-Patient K, Thomas M. Pre-, pro-, syn-, and postbiotics in infant formulas: What are the immune benefits for infants? Nutrients. 2023;15(5):1231. doi: 10.3390/nu15051231
  34. Matsuki T, Tajima S, Hara T, et al. Infant formula with galacto-oligosaccharides (OM55N) stimulates the growth of indigenous bifidobacteria in healthy term infants. Benef Microbes. 2016;7(4):453-61. doi: 10.3920/BM2015.0168
  35. Paganini D, Uyoga MA, Cercamondi CI, et al. Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: A stable-isotope study in Kenyan infants. Am J Clin Nutr. 2017;106(4):1020-31. doi: 10.3945/ajcn.116.145060
  36. Chu H, Tao X, Sun Z, et al. Galactooligosaccharides protects against DSS-induced murine colitis through regulating intestinal flora and inhibiting NF-κB pathway. Life Sci. 2020;242:117220. doi: 10.1016/j.lfs.2019.117220
  37. Park S, Park Y, Jeong YJ, et al. Combining 2'-fucosyllactose and galacto-oligosaccharides exerts anti-inflammatory effects and promotes gut health. J Dairy Sci. 2024;107(12):10203-20. doi: 10.3168/jds.2024-25171
  38. Ferrari M, van Leeuwen SS, de Vos P, et al. Impact of GOS and 2’-FL on the production and structural composition of membrane-associated exopolysaccharides by B. adolescentis and B. infantis. Carbohydr Polym. 2025;347:122660. doi: 10.1016/j.carbpol.2024.122660
  39. Lindner C, Looijesteijn E, Dijck HV, et al. Infant fecal fermentations with galacto-oligosaccharides and 2'-fucosyllactose show differential Bifidobacterium longum stimulation at subspecies level. Children (Basel). 2023;10(3):430. doi: 10.3390/children10030430

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The effect of galactooligosaccharides on the gut immune barrier in infants.

下载 (315KB)

版权所有 © Consilium Medicum, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-相同方式共享 4.0国际许可协议的许可。

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74329 от 19.11.2018 г.