Олигосахариды грудного молока – важнейший ингредиент грудного молока, влияющий на здоровье младенцев

Обложка

Цитировать

Полный текст

Аннотация

Грудное вскармливание остается «золотым стандартом» питания детей первых лет жизни. Однако такие факторы, как гипогалактия, стресс матери, проблемы со здоровьем и просто отсутствие желания кормить грудью, лишают ребенка грудного молока (ГМ) и ставят перед педиатром вопрос о выборе альтернативного питания. Состав ГМ сложен, динамичен и вызывает научный интерес, а внимание большинства ученых направлено на олигосахариды ГМ (ОГМ). Огромное количество позитивных эффектов ОГМ доказано в отношении здоровья ребенка. Они касаются не только формирования кишечной микробиоты, становления иммунного ответа, но и влияния на барьерную функцию кишечника и защиты от патогенов. При отсутствии грудного вскармливания можно использовать современные искусственные смеси, содержащие ОГМ. В настоящее время добавление комбинации из 5 ОГМ является многообещающим и эффективным подходом к поддержанию общего здоровья детей, находящихся на искусственном вскармливании.

Полный текст

Доступ закрыт

Об авторах

Ирина Николаевна Захарова

ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России

Автор, ответственный за переписку.
Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0003-4200-4598

д-р мед. наук, проф., зав. каф. педиатрии им. акад. Г.Н. Сперанского

Россия, Москва

Яна Владимировна Оробинская

ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России; ГБУЗ МО «Химкинская больница»

Email: zakharova-rmapo@yandex.ru
ORCID iD: 0009-0005-2121-4010

аспирант каф. педиатрии им. акад. Г.Н. Сперанского

Россия, Москва; Химки

Нарине Григорьевна Сугян

ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России; ГБУЗ МО «Химкинская больница»

Email: narine6969@mail.ru
ORCID iD: 0000-0002-2861-5619

канд. мед. наук, доц. каф. педиатрии им. акад. Г.Н. Сперанского, зам. глав. врача

Россия, Москва; Химки

Ирина Владимировна Бережная

ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России

Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0002-2847-6268

канд. мед. наук, доц. каф. педиатрии им. акад. Г.Н. Сперанского

Россия, Москва

Список литературы

  1. Dinleyici M, Barbieur J, Dinleyici EC, Vandenplas Y. Functional effects of human milk oligosaccharides (HMOs). Gut Microbes. 2023;15(1):2186115. doi: 10.1080/19490976.2023.2186115
  2. Reid A. Infant feeding and child health and survival in Derbyshire in the early twentieth century. Womens Stud Int Forum. 2017;60:111-9. doi: 10.1016/j.wsif.2016.10.011
  3. Kunz C. Historical aspects of human milk oligosaccharides. Adv Nutr. 2012;3(3)430S-9S. doi: 10.3945/an.111.001776
  4. Tissier H. Recherches sur la flora intestinale de nourissons (état normal et pathologique). Paris, 1900.
  5. Walsh C, Lane JA, van Sinderen D, Hickey RM. Human milk oligosaccharides: shaping the infant gut microbiota and supporting health. J Funct Foods. 2020;72:104074. doi: 10.1016/j.jff.2020.104074
  6. Cheng YJ, Yeung CY. Recent advance in infant nutrition: human milk oligosaccharides. Pediatr Neonatol. 2021;62(4)347-53. doi: 10.1016/j.pedneo.2020.12.013
  7. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9)1147-62. doi: 10.1093/glycob/cws074
  8. Petschacher B, Nidetzky B. Biotechnological production of fucosylated human milk oligosaccharides: Prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. J Biotechnol. 2016;23561-83. doi: 10.1016/j.jbiotec.2016.03.052
  9. German JB, Freeman SL, Lebrilla CB, Mills DA. Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria. Nestle Nutr Workshop Ser Pediatr Program. 2008;62:205-18; discussion 218-22. doi: 10.1159/000146322
  10. Chen X. Human Milk Oligosaccharides (HMOS): Structure, Function, and Enzyme-Catalyzed Synthesis. Adv Carbohydr Chem Biochem. 2015;72:113-90. doi: 10.1016/bs.accb.2015.08.002
  11. Захарова И.Н., Оробинская Я.В., Сугян Н.Г., и др. Олигосахариды грудного молока: что мы знаем о них сегодня? Педиатрия. Consilium Medicum. 2022;22(3):204-12 [Zakharova IN, Orobinskaia IaV, Sugian NG, et al. Breast milk oligosaccharides: what do we know today? Pediatrics. Consilium Medicum. 2022;22(3):204-12 (in Russian)]. doi: 10.26442/26586630.2022.3.201851
  12. Corona L, Lussu A, Bosco A, et al. Human Milk Oligosaccharides: A Comprehensive Review towards Metabolomics. Children (Basel). 2021;8(9):804. doi: 10.3390/children8090804
  13. Luo Y, Zhang Y, Yang Y, et al. Bifidobacterium infantis and 2'-fucosyllactose supplementation in early life may have potential long-term benefits on gut microbiota, intestinal development, and immune function in mice. J Dairy Sci. 2023;106(11)7461-76. doi: 10.3168/jds.2023-23367
  14. Triantis V, Bode L, van Neerven RJJ. Immunological Effects of Human Milk Oligosaccharides. Front Pediatr. 2018;6:190. doi: 10.3389/fped.2018.00190
  15. Nogacka AM, Cuesta I, Gueimonde M, de Los Reyes-Gavilán CG. 2-Fucosyllactose Metabolism by Bifidobacteria Promotes Lactobacilli Growth in Co-Culture. Microorganisms. 2023;11(11):2659. doi: 10.3390/microorganisms11112659
  16. Padilla L, Fricker AD, Luna E, et al. Mechanism of 2'-fucosyllactose degradation by human-associated Akkermansia. J Bacteriol. 2024;206(2):e0033423. doi: 10.1128/jb.00334-23
  17. Vandenplas Y, Berger B, Carnielli VP, et al. Human Milk Oligosaccharides: 2'-Fucosyllactose (2'-FL) and Lacto-N-Neotetraose (LNnT) in Infant Formula. Nutrients. 2018;10(9):1161. doi: 10.3390/nu10091161
  18. Zhang S, Chen L, Hu M, Zhu J. 2'-Fucosyllactose (2'-FL) changes infants gut microbiota composition and their metabolism in a host-free human colonic model. Food Res Int. 2023;173(Pt. 1):113293. doi: 10.1016/j.foodres.2023.113293
  19. Yu ZT, Nanthakumar NN, Newburg DS. The Human Milk Oligosaccharide 2'-Fucosyllactose Quenches Campylobacter jejuni-Induced Inflammation in Human Epithelial Cells HEp-2 and HT-29 and in Mouse Intestinal Mucosa. J Nutr. 2016;146(10):1980-90. doi: 10.3945/jn.116.230706
  20. Li J, Wei Y, Liu C, et al. 2'-Fucosyllactose restores the intestinal mucosal barrier in ulcerative colitis by inhibiting STAT3 palmitoylation and phosphorylation. Clin Nutr. 2024;43(2):380-94. doi: 10.1016/j.clnu.2023.12.011
  21. Zhao G, Williams J, Washington MK, et al. 2'-Fucosyllactose Ameliorates Chemotherapy-Induced Intestinal Mucositis by Protecting Intestinal Epithelial Cells Against Apoptosis. Cell Mol Gastroenterol Hepatol. 2022;13(2):441-57. doi: 10.1016/j.jcmgh.2021.09.015
  22. Nakano T, Sugawara M, Kawakami H. Sialic acid in human milk: composition and functions. Acta Paediatr Taiwan. 2001;42(1):11-7.
  23. Hennet T, Chui D, Paulson JC, Marth JD. Immune regulation by the ST6Gal sialyltransferase. Proc Natl Acad Sci U S A. 1998;95(8):4504-9. doi: 10.1073/pnas.95.8.4504
  24. Clouard C, Reimert I, Fleming SA, et al. Dietary sialylated oligosaccharides in early-life may promote cognitive flexibility during development in context of obesogenic dietary intake. Nutr Neurosci. 2022;25(12):2461-78. doi: 10.1080/1028415X.2021.1975877
  25. Tarr AJ, Galley JD, Fisher SE, et al. The prebiotics 3’Sialyllactose and 6’Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: Evidence for effects on the gut-brain axis. Brain Behav Immun. 2015;50:166-77. doi: 10.1016/j.bbi.2015.06.025
  26. Pisa E, Martire A, Chiodi V, et al. Exposure to 3’Sialyllactose-Poor Milk during Lactation Impairs Cognitive Capabilities in Adulthood. Nutrients. 2021;13(12):4191. doi: 10.3390/nu13124191
  27. Nguyen DV, Jin Y, Nguyen TLL, et al. 3'-Sialyllactose protects against LPS-induced endothelial dysfunction by inhibiting superoxide-mediated ERK1/2/STAT1 activation and HMGB1/RAGE axis. Life Sci. 2024;338:122410. doi: 10.1016/j.lfs.2023.122410
  28. Jin Y, Jeon H, Le Lam Nguyen T, et al. Human milk oligosaccharides 3'-sialyllactose and 6'-sialyllactose attenuate LPS-induced lung injury by inhibiting STAT1 and NF-κB signaling pathways. Arch Pharm Res. 2023;46:897-906. doi: 10.1007/s12272-023-01470-1
  29. Lee HJ, Shin DJ, Han K, et al. Simultaneous production of 2'-fucosyllactose and difucosyllactose by engineered Escherichia coli with high secretion efficiency. Biotechnol J. 2022;17(3):e2100629. doi: 10.1002/biot.202100629
  30. Phipps KR, Baldwin N, Lynch B, et al. Safety evaluation of a mixture of the human-identical milk oligosaccharides 2'-fucosyllactose and difucosyllactose. Food Chem Toxicol. 2018;120:552-65. doi: 10.1016/j.fct.2018.07.054
  31. Zhang P, Zhu Y, Li Z, et al. Recent Advances on Lacto-N-neotetraose, a Commercially Added Human Milk Oligosaccharide in Infant Formula. J Agric Food Chem. 2022;70(15):4534-47. doi: 10.1021/acs.jafc.2c01101
  32. Bidart GN, Rodríguez-Díaz J, Monedero V, Yebra MJ. A unique gene cluster for the utilization of the mucosal and human milk-associated glycans galacto-N-biose and lacto-N-biose in Lactobacillus casei. Mol Microbiol. 2014;93(3):521-38. doi: 10.1111/mmi.12678
  33. Zhang B, Li LQ, Liu F, Wu JY. Human milk oligosaccharides and infant gut microbiota: Molecular structures, utilization strategies and immune function. Carbohydr Polym. 2022;276:118738. doi: 10.1016/j.carbpol.2021.118738
  34. Kim SY, Yi DY. Components of human breast milk: from macronutrient to microbiome and microRNA. Clin Exp Pediatr. 2020;63(8):301-9. doi: 10.3345/cep.2020.00059
  35. Fanaro S, Boehm G, Garssen J, et al. Galacto-oligosaccharides and long-chain fructo-oligosaccharides as prebiotics in infant formulas: a review. Acta Paediatr Suppl. 2005;94(449):22-6. doi: 10.1111/j.1651-2227.2005.tb02150.x
  36. Davani-Davari D, Negahdaripour M, Karimzadeh I, et al. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods. 2019;8(3):92. doi: 10.3390/foods8030092
  37. Макарова Е.Г., Нетребенко О.К., Украинцев С.Е. Олигосахариды грудного молока: история открытия, структура и защитные функции. Педиатрия. 2018;97(4):152-60 [Makarova EG, Netrebenko OK, Ukraintsev SE. Breast milk oligosaccharides: the history of discovery, structure and protective functions. Pediatria. 2018;97(4):152-60 (in Russian)]. doi: 10.24110/0031-403X-2018-97-4-152-160
  38. Newburg DS, Ruiz-Palacios GM, Morrow AL. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr. 2005;2537-58. doi: 10.1146/annurev.nutr.25.050304.092553
  39. Ninonuevo MR, Bode L. Infant formula oligosaccharides opening the gates (for speculation): commentary on the article by Barrat et al. on page 34. Pediatr Res. 2008;64(1):8-10. doi: 10.1203/PDR.0b013e3181752c2f
  40. Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013;62(8):1112-21. doi: 10.1136/gutjnl-2012-303304
  41. Arnold JW, Roach J, Fabela S, et al. The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut. Microbiome. 2021;9(1):31. doi: 10.1186/s40168-020-00980-0
  42. Elison E, Vigsnaes LK, Rindom Krogsgaard L, et al. Oral supplementation of healthy adults with 2'-O-fucosyllactose and lacto-N-neotetraose is well tolerated and shifts the intestinal microbiota. Br J Nutr. 2016;116(8):1356-68. doi: 10.1017/S0007114516003354
  43. Milani C, Duranti S, Bottacini F, et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036-17. doi: 10.1128/MMBR.00036-17
  44. Logtenberg MJ, Donners KMH, Vink JCM, et al. Touching the High Complexity of Prebiotic Vivinal Galacto-oligosaccharides Using Porous Graphitic Carbon Ultra-High-Performance Liquid Chromatography Coupled to Mass Spectrometry. J Agric Food Chem. 2020;68(29):7800-8. doi: 10.1021/acs.jafc.0c02684
  45. Goehring KC, Marriage BJ, Oliver JS, et al. Similar to Those Who Are Breastfed, Infants Fed a Formula Containing 2'-Fucosyllactose Have Lower Inflammatory Cytokines in a Randomized Controlled Trial. J Nutr. 2016;146(12):2559-66. doi: 10.3945/jn.116.236919
  46. Salli K, Anglenius H, Hirvonen J, et al. The effect of 2'-fucosyllactose on simulated infant gut microbiome and metabolites; a pilot study in comparison to GOS and lactose. Sci Rep. 2019;9(1):13232. doi: 10.1038/s41598-019-49497-z
  47. Roger LC, Costabile A, Holland DT, et al. Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology (Reading). 2010;156(Pt. 11):3329-41. doi: 10.1099/mic.0.043224-0
  48. Lindner C, Looijesteijn E, Dijck HV, et al. Infant Fecal Fermentations with Galacto-Oligosaccharides and 2'-Fucosyllactose Show Differential Bifidobacterium longum Stimulation at Subspecies Level. Children (Basel). 2023;10(3):430. doi: 10.3390/children10030430
  49. Vester Boler BM, Rossoni Serao MC, Faber TA, et al. In vitro fermentation characteristics of select nondigestible oligosaccharides by infant fecal inocula. J Agric Food Chem. 2013;61(9):2109-19. doi: 10.1021/jf305056f
  50. Bienenstock J, Buck RH, Linke H, et al. Fucosylated but not sialylated milk oligosaccharides diminish colon motor contractions. PLoS One. 2013;8(10):e76236. doi: 10.1371/journal.pone.0076236
  51. Stewart CJ. 2022 Fleming Prize Lecture: diet-microbe-host interaction in early life. J Med Microbiol. 2023;72(4). doi: 10.1099/jmm.0.001662
  52. Sanz Morales P, Wijeyesekera A, Robertson MD, et al. The Potential Role of Human Milk Oligosaccharides in Irritable Bowel Syndrome. Microorganisms. 2022;10(12):2338. doi: 10.3390/microorganisms10122338
  53. Puccio G, Alliet P, Cajozzo C, et al. Effects of Infant Formula With Human Milk Oligosaccharides on Growth and Morbidity: A Randomized Multicenter Trial. J Pediatr Gastroenterol Nutr. 2017;64(4):624-31. doi: 10.1097/MPG.0000000000001520
  54. Martin FP, Tytgat HLP, Krogh Pedersen H, et al. Host-microbial co-metabolites modulated by human milk oligosaccharides relate to reduced risk of respiratory tract infections. Front Nutr. 2022;9:935711. doi: 10.3389/fnut.2022.935711
  55. Zuurveld M, Ayechu-Muruzabal V, Folkerts G, et al. Specific Human Milk Oligosaccharides Differentially Promote Th1 and Regulatory Responses in a CpG-Activated Epithelial/Immune Cell Coculture. Biomolecules. 2023;13(2):263. doi: 10.3390/biom13020263
  56. Wallingford JC, Neve Myers P, Barber CM. Effects of addition of 2-fucosyllactose to infant formula on growth and specific pathways of utilization by Bifidobacterium in healthy term infants. Front Nutr. 2022;9:961526. doi: 10.3389/fnut.2022.961526
  57. Нетребенко О.К., Украинцев С.Е., Дубровская М.И. Современные концепции разработки и создания детских молочных смесей: вчера, сегодня, завтра. Педиатрия. 2019;98(1):201-9 [Netrebenko OK, Ukraintsev SE, Dubrovskaya MI. Modern concepts of development and creation of infant formula: yesterday, today, tomorrow. Pediatria. 2019;98(1):201-9 (in Russian)]. doi: 10.24110/0031-403X-2019-98-1-201-209
  58. Conze DB, Kruger CL, Symonds JM, et al. Weighted analysis of 2'-fucosyllactose, 3-fucosyllactose, lacto-N-tetraose, 3'-sialyllactose, and 6'-sialyllactose concentrations in human milk. Food Chem Toxicol. 2022;163:112877. doi: 10.1016/j.fct.2022.112877
  59. Parschat K, Melsaether C, Jäpelt KR, Jennewein S. Clinical Evaluation of 16-Week Supplementation with 5HMO-Mix in Healthy-Term Human Infants to Determine Tolerability, Safety, and Effect on Growth. Nutrients. 2021;13(8):2871. doi: 10.3390/nu13082871
  60. Holst AQ, Myers P, Rodríguez-García P, et al. Infant Formula Supplemented with Five Human Milk Oligosaccharides Shifts the Fecal Microbiome of Formula-Fed Infants Closer to That of Breastfed Infants. Nutrients. 2023;15(14):3087. doi: 10.3390/nu15143087
  61. Lasekan J, Choe Y, Dvoretskiy S, et al. Growth and Gastrointestinal Tolerance in Healthy Term Infants Fed Milk-Based Infant Formula Supplemented with Five Human Milk Oligosaccharides (HMOs): A Randomized Multicenter Trial. Nutrients. 2022;14(13):2625. doi: 10.3390/nu14132625
  62. Özcan E, Sela DA. Inefficient Metabolism of the Human Milk Oligosaccharides Lacto-N-tetraose and Lacto-N-neotetraose Shifts Bifidobacterium longum subsp. infantis Physiology. Front Nutr. 2018;5:46. doi: 10.3389/fnut.2018.00046
  63. Koletzko S, Niggemann B, Arato A, et al. Diagnostic approach and management of cow’s-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines. J Pediatr Gastroenterol Nutr. 2012;55(2):221-9. doi: 10.1097/MPG.0b013e31825c9482
  64. Austin S, De Castro CA, Sprenger N, et al. Human Milk Oligosaccharides in the Milk of Mothers Delivering Term versus Preterm Infants. Nutrients. 2019;11(6):1282. doi: 10.3390/nu11061282
  65. Salminen S, Collado MC, Endo A, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol. 2021;18(9):649-67. doi: 10.1038/s41575-021-00440-6
  66. Bosheva M, Tokodi I, Krasnow A, et al. Infant Formula With a Specific Blend of Five Human Milk Oligosaccharides Drives the Gut Microbiota Development and Improves Gut Maturation Markers: A Randomized Controlled Trial. Front Nutr. 2022;9:920362. doi: 10.3389/fnut.2022.920362
  67. Laursen MF, Sakanaka M, von Burg N, et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat Microbiol. 2021;6(11):1367-82. doi: 10.1038/s41564-021-00970-4
  68. Kim JH, An HJ, Garrido D, et al. Proteomic analysis of Bifidobacterium longum subsp. infantis reveals the metabolic insight on consumption of prebiotics and host glycans. PLoS One. 2013;8(2):e57535. doi: 10.1371/journal.pone.0057535

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Функции ОГМ.

Скачать (260KB)
3. Рис. 2. Относительная численность Bifidobacterium в группах младенцев, получавших стандартную смесь без ОГМ (CG), смесь с концентрацией 5 ОГМ 1,5 г/л (TG1), смесь с концентрацией 5 ОГМ 2,5 г/л (TG2) [66].

Скачать (94KB)
4. Рис. 3. Относительная численность B. infantis в группах младенцев, получавших стандартную смесь без ОГМ (CG), смесь с концентрацией 5 ОГМ 1,5 г/л (TG1), смесь с концентрацией 5 ОГМ 2,5 г/л (TG2) [66].

Скачать (96KB)
5. Рис. 4. Концентрация sIgA в TG1 и TG2 на 53% (р<0,01) и 43% (р<0,05) выше, чем в CG, соответственно, и разница сохранялась через 6 мес для TG2 (р<0,05) [66].

Скачать (52KB)

© ООО "Консилиум Медикум", 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74329 от 19.11.2018 г.