WOOD POROSITY: UNIVERSAL PARAMETER FOR DENDROCLIMATIC ANALYSIS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Annual rings of conifers have traditionally served as a reliable indicator of climatic changes, whereas such analysis methods are poorly developed for diffuse-porous species such as common aspen (Populus tremula L.). In this paper, a new approach, PiC densitometry, based on algorithmic analysis of wood porosity distribution along the annual ring, is proposed. The study was conducted on samples of Scots pine (Pinus sylvestris L.) and aspen. The methodology included measurement of annual ring widths, anatomical analysis of wood microstructure and software image processing to construct porosity profiles. The results revealed fundamental differences in porosity dynamics between species: in pine its value decreases by 70 % from early- to latewood, reflecting a seasonal reduction in water supply, whereas in aspen the change does not exceed 20 %, indicating a stable water demand throughout the season. Dendroclimatic analysis showed that pine radial growth was most sensitive to May-June precipitation, while in aspen, temperatures during the same period were the key factor. The developed PiC densitometry method expands the possibilities of dendrochronological studies, allowing the use of diffuse-porous species for climate reconstruction and assessment of its influence on wood structure.

About the authors

T. A. Khudykh

Institute of Ecology and Geography

Email: khudykta@gmail.com
Siberian Federal University, Krasnoyarsk, Russian Federation

L. V. Belokopytova

Khakass Technical Institute; Institute of Ecology and Geography

Siberian Federal University, Abakan, Russian Federation; Siberian Federal University, Krasnoyarsk, Russian Federation

E. A. Babushkina

Khakass Technical Institute; Institute of Ecology and Geography

Siberian Federal University, Abakan, Russian Federation; Siberian Federal University, Krasnoyarsk, Russian Federation

E. A. Vaganov

Institute of Ecology and Geography; Department of Dendroecology, V. N. Sukachev Institute of Forest

Siberian Federal University, Krasnoyarsk, Russian Federation; Krasnoyarsk, Russian Federation

References

  1. Fritts, H., Tree Rings and Climate, New York: Academic Press, 2012.
  2. Schweingruber, F.H., Microscopic Wood Anatomy: Structural Variability of Stems and Twigs in Recent and Subfossil Woods from Central Europe, Birmensdorf: Swiss Federal Institute for Forest, Snow and Landscape Research, 1990.
  3. Vaganov, E.A., Hughes, M.K., and Shashkin, A.V., Growth Dynamics of Conifer Tree Rings: Images of Past and Future Environments // Ecol. Stud. 2006. Vol. 183.
  4. Babushkina, E.A., Belokopytova, L.V., Zhirnova, D.F., et al. // Dendrochronologia. 2019. Vol. 53. Р. 114–124.
  5. Pandey, S. // J. Wood Sci. 2021. Vol. 67. № 1. Р. 24.
  6. Garcia-Gonzalez, I., Souto-Herrero, M., and Campelo, F. // IAWA J. 2016. Vol. 37. № 2. Р. 295–314.
  7. Zimmermann, M.H., Xylem Structure and the Ascent of Sap. Berlin–Heidelberg: Springer-Verlag, 1983.
  8. Kirdyanov, A.V., Vaganov, E.A., and Hughes, M.K. // Trees. 2007. Vol. 21. Р. 37–44.
  9. Silkin, P.P., Kirdyanov, A.V., Krusic, P.J., et al. // J. Sib. Fed. Univ. Biol. 2022. Vol. 15. № 4. Р. 441–455.
  10. Khudykh, T.A., Belokopytova, L.V., Yang, B., et al. // Biology. 2024. Vol. 13. № 4. Р. 223.
  11. Sperry, J.S., Hacke, U.G., and Pittermann, J. // Am. J. Bot. 2006. Vol. 93. № 10. Р. 1490–1500.
  12. Cook, E.R. and Kairiukstis, L.A., Methods of Dendrochronology: Applications in the Environmental Sciences, Boston: Kluwer Academic, 2013.
  13. Rinn, F., TSAP-Win. Time Series Analysis and Presentation for Dendrochronology and Related Applications, Version 0.59 for Microsoft Windows, Heidelberg: Rinntech, 2003. Р. 91.
  14. Holmes, R.L. // Tree-Ring Bull. 1983. Vol. 43. Р. 69–78.
  15. Carrer, M., Castagneri, D., Prendin, A.L., et al. // Front. Plant Sci. 2017. Vol. 8. Р. 737.
  16. Babushkina, E.A., Belokopytova, L.V., Zhirnova, D.F., et al. // Int. J. Biometeorol. 2018. Vol. 62. Р. 939–948.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences